From Leak Detection to Network Intelligence

Using data analytics to extract more value from Advanced Leak Detection

Mike Kerans PG&E, François Rongere Picarro, Inc.

PG&E Gas Overview

One of the Largest Combined Gas & Electric Utilities in the United States		
Transmission Miles Distribution Miles	~5,650 ~44,300	
Facilities	9 Compressor Stations3 Storage Facilities450 Regulation/MeteringStations	
Customer Base	4.7 Million customer meters served in Northern & Central CA	

~44,300 miles of gas distribution main

~34,200 miles of gas distribution services

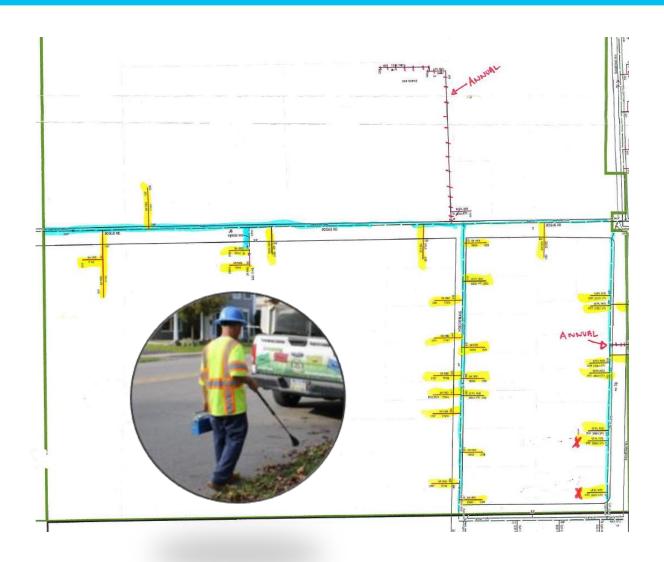
~78,500 miles of gas distribution pipe

Enough pipe to wrap around the circumference of the Earth 3-times!

~3.4 million services ~6,300 cathodic protection areas

~7,700 active emergency valves ~4,000 rectifiers

Public

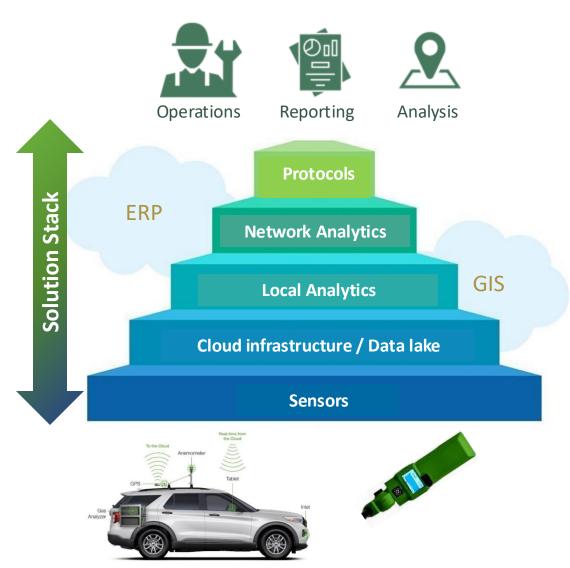

Traditional Leak Survey (before AMLD)

Key purposes of Traditional Method

- Compliance
- Prioritizing Repair schedules
- Minimal Risk Assessment

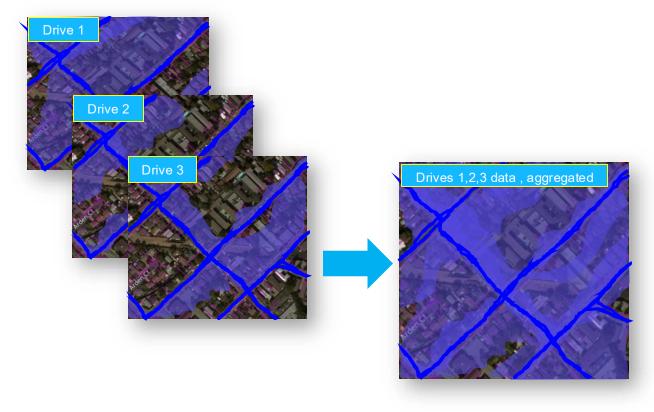
Data Collection Process

- 5 Year leak survey with crews walking lines
- Paper Maps and paper leak forms used
- Originally stored in paper then into basic databases
- Leak indications and methane volumes were not recorded
- Repair data collected



Advanced Mobile Leak Detection and Picarro Overview

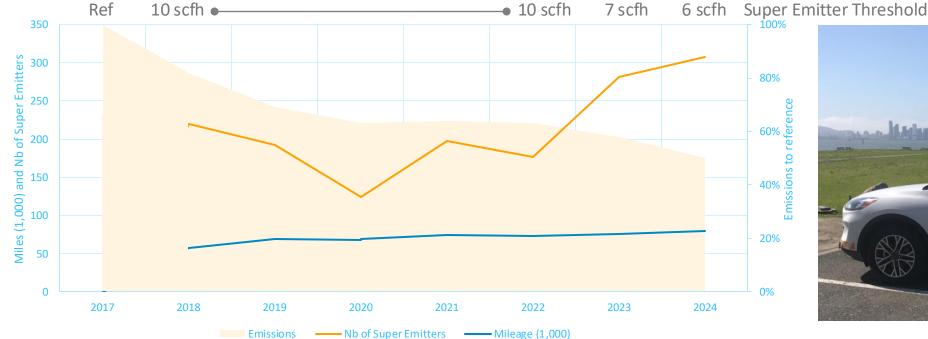
- Picarro is the world leader in AMLD
 - 50+ gas operators worldwide
 - 1M+ miles of mains covered since 2012
 - 4M+ detections found

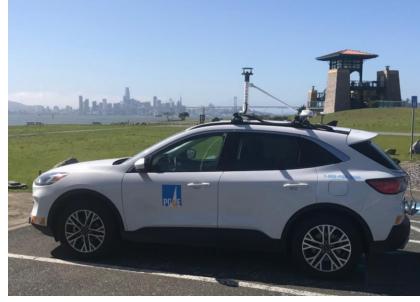

AMLD to support leak survey process but also to generate data for more value

Principle of AMLD

Finding leaks

Field of View through data analytics


Assessing what assets were covered



PG&E's Super Emitter Program

- Progress in data analysis unlocked estimation of leak flow rate in 2017.
- Starting in 2018, we drove entire distribution system every year rather than 3 years for compliance surveys and only investigate and repair detections greater than a certain threshold
- In 2023, we decreased the Super Emitter Threshold from 10 to 7 standard cubic feet per hour (scfh)
- In 2024, we decreased it to 6 standard cubic feet per hour (scfh)



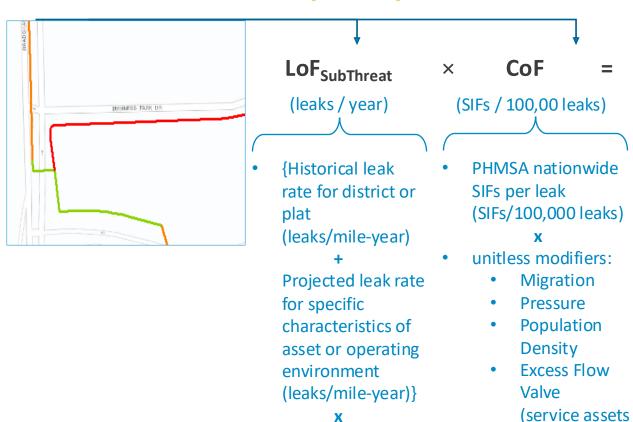
Prioritizing Detections based on the associated risk

- Leak detections do not carry the same risk depending on their location, their environment, their size, the assets around them, etc.
- Risk can be assessed for every detection as a function of asset and environment attributes supplemented with data collected by Picarro.

 This representation is fully auditable and represented by a combination of additive and multiplicative terms.

Injecting DIMP data

Asset risk is modeled using several datasets of frequency and consequence

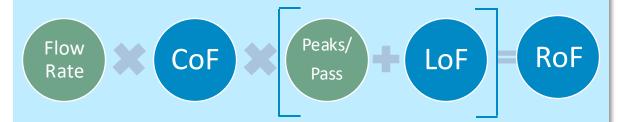

- Frequency of leaks (excludes non-leaking scenarios)
- Safety consequence (excludes gas reliability or other consequences)
- 8 code-required threats split into 33 sub-threats:

Corrosion	Excavation	Material, Weld, or Joint Failure	Incorrect Operation	Natural Force	Other Outside Force	Equipment Failure	Other
InternalExternalAtmospheric	Excavation Damage	 Longitudinal Weld Failure Metallic Material Failure Plastic Material Failure, Body of Pipe Plastic Material Failure Fitting Compression Coupling Plastic Tee Cap, Material Failure 	 Crossbore Fusion Failure Other Weld Failure Girth Weld Failure Incorrect Operation Construction Defect 	 Earthquake Earth Movement Flood Lightning Root Damage Tsunami Other Natural Forces 	 Fire/explosion Rodent Previously Damaged Electrical Facilities Third Party Vandalism Vehicle 	 Seal Failure Miscellaneous 	• Other

Injecting DIMP data - General Risk Equation

Risk of Failure (RoF) Serious Injuries & Fatalities (SIFs) / 100,000 years per segment

segment mileage

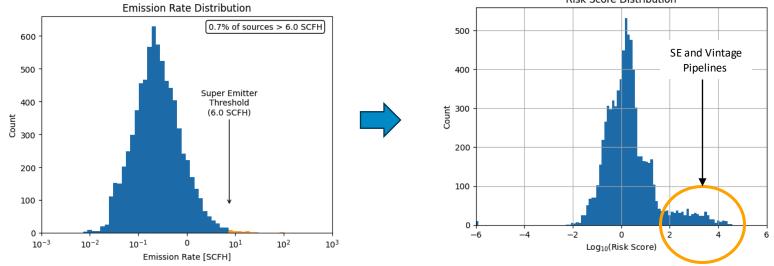

leaks / year

 $RoF_{SubThreat}$

(SIFs / 100,000 years)

Applying Risk Data to Leak Detection

Risk can be assessed for every leak detection as a function of asset and environment attributes supplemented with flow data. i.e. high flow rates


With increasing data collection, a new view on asset risk and investment alternatives becomes possible.

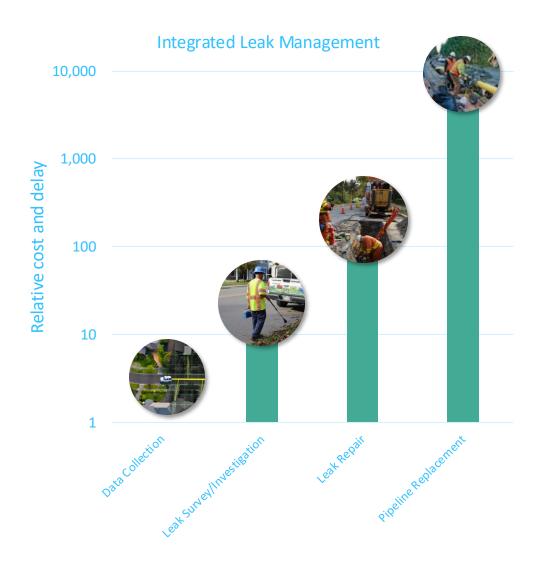
only)

First Application: accelerated surveys of vintage pipelines

- Accelerated survey (annual) of higher leak density vintage steel (pre-1940) and Aldyl-A (pre-1975) pipelines
- Used the risk-informed prioritization by adding pipeline material and vintage to flow rate and persistence.

- Same data set as for Super Emitter Program but added a material-based prioritization factor to extend to vintage pipelines.
- Risk—informed model provides flexibility for gas operators to leverage the data to different programs extracting more value from the surveys.

Extension to risk-informed leak management


Each detection is assigned a risk as defined earlier. They are aggregated to represent the risk at the system level

 Detection Risk Scores span over more than System Risk and Contribution of Higher Risk 4 orders of magnitude **Detections** 0.004 **Risk Score Distribtion** 10000 0.0035 1000 0.003 0.0025 100 96% 10 0.0015 0.001 0.1 0.0005 500 1000 1500 2500 **Detection Risk Score** PS=10 55%

Public

Minimization of System Risk

 Comparing 5 year survey and repairing everything to Annual Data Collection and repairing PS>10

5 years survey		All Leaks	PS<10	PS>10	
	area1	0.04%	0.00%	0.03%	
	area2	0.14%	0.01%	0.14%	
	area3	0.32%	0.01%	0.31%	
	area4	0.58%	0.02%	0.55%	
	area5	9.36%	0.03%	0.87%	
	All areas	1.97%	0.07%	1.89%	

Annual survey	All Leaks	PS<10	PS>10	
area1	0.04% 0.00%		0.03%	
area2	0.04%	0.01%	0.03%	
area3	0.05%	0.01%	0.03%	
area4	0.06%	0.02%	0.03%	
area5	0.07%	0.03%	0.03%	
All areas	0.25%	0.07%	0.17%	

Increasing System Safety by a factor of 8 while reducing repair cost by 2

Conclusion

- Data Analytics leverage AMLD for much more than leak detection
- The same survey can then feed several programs
 - Emissions, pipeline replacement, risk reduction, etc.
- Risk at the system level optimizes the use of utility's resources (leak survey, repair, pipeline replacement, operation, etc.)
- Reduce O&M expenses by leveraging the system intelligence
- AMLD associated with data analytics unlocks new opportunities for utilities to integrate leak management to minimize risk.
- For operator risk, emission, and cost reduction: convergence of interests between regulators, operators, customers

Thank You

Mike Kerans PG&E, François Rongere Picarro, Inc.

