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The Complex Landscape of the U.S. Electric Grid

▪ Multiple regulatory/operational layers with limited interoperability

▪ Each layer has different priorities, timelines, and data formats.

▪ Distributed data silos limit situational awareness and optimizing coordination.

▪ System-wide reliability depends on both vertical and horizon coordination.

3

FERC (Federal Regulation)

NERC (Reliability Standards)

RTO/ISO

Utilities

RTO/ISO RTO/ISO (Regional Operators)

Utilities Utilities Utilities Utilities Utilities

Data silo

Data silo

Multiple data silos

Multiple data silos

+ grid edge devices

V
e

rt
ic

a
l 
C

o
o

rd
in

a
ti
o

n

Horizontal Collaboration



GridFM: Coordinating AI Agents Across the Grid 
Hierarchy

▪ GridFM enables shared intelligence across layers while preserving autonomy.

▪ AI agents at each layer can fine-tune locally, while benefitting from global learning.

▪ Potential advantages:
— Cross-layer situational awareness (e.g., transmission and distribution)
— Faster and more informed response to dynamic events

— Generalizable models for planning, operations, and emergency response.
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MULTI-TASK TRAINING IN GRIDFM

Task Full name Task Description
AC or 

DC

1 or 3-

phase

Learning  

task

DSSE
Distribution System 

State Estimation

Estimates current system 

status (voltages, power flows) 
using limited sensor data

AC 3
Infilling or 

Forecasting

ACOPF
Alternating Current 

Optimal Power Flow

Finds the most efficient way 

to operate the system while 
meeting demand

AC 1 or 3
Learning to 

optimize

SCUC
Security-Constrained 

Unit Commitment

Decides which power plants 

to turn on for the next day
DC 1

Learning to 

optimize

RA
Reliability 

Assessment 

Determine if the system can 

handle contingency without 
causing power outages

DC 1
Learning to 

optimize



ACOPF SCUC RA

Minutes Days Years

Real-time schedule 

adjustment

Short-term system 

operation schedule

Long-term system 

expansion planning

ACOPF: Alternating Current Optimal Power Flow

SCUC: Security-Constrained Unit Commitment
RA: Reliability Assessment 

RELATIONSHIP BETWEEN THREE TASKS

Reliable system 

configuration

Robust unit 

commitment

Repeated 

optimization

Mixed-integer 

optimization

Non-convex 

optimization

3-phase AC system

1-phase DC system
1-phase DC system

Time scale

Model

Information 

Transfer

Technical 

Challenge

Decision-

making Task

1 snapshot

24 continuous hours
100,000 * 24 hours



MONITORING OPPORTUNITY AND CHALLENGES
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More Sensors ≠ More Visibility

Pain Point Why it matters

Clock Mismatch
µPMU(30-120sps), SCADA(2-4s), AMI(15min), 

DER inverter (1s)

Data Silos & 

Access

OT, IT and DER portals use different protocols.

Integration requires bespoke gateways

Sparse 

Coverage

<10% nodes carry sensors 

Pseudo-measurements inflate estimation error

Latency & Cyber 

Risk

Communication infrastructure adds delay

NERC CIP, privacy rules and potential spoofing 
throttle real-time streams.



DATA LANDSCAPE

Sensor Class Spatial Granularity Temporal Rate Latency Clock-Sync

AMI smart-meter Every customer meter 1–60 min (15 min typ.) 1 h – 1 day

SCADA RTU Substation, feeder, breaker 2–4 s 2–4 s

µPMU Critical node (very sparse) 30-120 sps (<16 ms) < 50 ms

DER inverter Each PV / BESS unit 1 s 5–10 s  (NTP)

Line sensor Selected spans 128 samples / cycle < 1 s  (GPS)

Weather node Service-area clusters 1 min < 5 s

BESS monitor Per battery rack 1 s < 1 s  (NTP)

Diverse Measurements, Resolutions, Latencies, and Clocks
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DATA GENERATION

Why Synthetic Data?

▪ ≥ 1 million multichannel samples required for training

▪ Utility sensors can’t supply that volume from single feeder

Data Pipeline

1. Map real AMI data → synthetic feeder nodes

2. Up-sample node-level load profiles for every 1s tick

3. Run OpenDSS at each tick → complete power flow data

4. Export time-aligned data sets (µPMU + AMI, SCADA, DERs)

Key Benefits

▪ Field-anchored realism without disclosing customer data

▪ Unlimited scenario generation: DER mixes, faults, topology flips

▪ Time-stamped labels for physics-aware model training Synthetic Data Generation Pipeline

ComEd raw 
data at zip 
code and 

month
(.csv)

Extraction

Format change

Smart Meter 
time series 

Profiles
(.csv)

OpenDSS 
models 
(.dss)

Sample profiles
Select node

Generate smart 
meter profiles 

combinations for 
each node

Run Power Flow

Collect voltage and 
current profiles

Current and 
voltage 
profiles 
(.json)

AMI-Driven Synthetic Power-Flow Engine
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Heterogenous graph representation
▪ Heterogeneous graph 

—Node: bus, generator, storage, etc.

— Edge: line, transformer, etc.

—Graph: optimal solution, config, 

etc.

▪ Feature space:

— Static graph

— Static graph with temporal signal

—Dynamic graph with temporal 

signal

Static/Temporal 

Hetero Graph Data
𝒩1 ℬ, ℰ ,⋯𝒩𝑛(ℬ, ℰ)

Power Grid Data

Key Challenge - feature dimensions will vary based on tasks



MUTLI-TASK LEARNING WITH GRAPHS

▪ Hard parameter sharing: 

— A significant portion of the model’s architecture (e.g., encoder) is 

shared among all tasks. 

— Each task then has its own smaller, task-specific output layer. 

— The shared layers learn a general representation of the input data, 
while the task-specific layers fine-tune this representation for the 

nuances of each task.
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TASK LAYERS 

▪ ACOPF: 

—Regression task with MLP layers and 

Physics-loss

…
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Why a Graph-Transformer NN?

▪ Graph representation embeds feeder 
topology – nodes  embed local measurements 

& connectivity.

▪ Multi-head attention captures long-range 
electrical interactions missed by standard GNN 

message-passing.

▪ Masked attention seamlessly up-samples low-

frequency data (AMI) to high-frequency 
estimation (µPMU).

▪ Physics-aware loss penalizes infeasible 

power-flow states, ensuring physically valid 
estimates.

▪ Shared encoder layers across infill and 
forecasting task variants;

DISTRIBUTION SYSTEM STATE ESTIMATION
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Converts heterogeneous sensor feeds into a unified, physics-consistent state vector.



Voltage magnitude heatmaps using our best-performing 

Graph Transformer. Consistent over-estimation of time-varying 

fluctuations by naïve methods shows opportunity.
[1] GCN: Graph Conv Net. Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

[2] GAT: Graph Attention Transformer. Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. "Graph attention networks." arXiv :1710.10903 (2017).

[3] GIN: Graph Isomorphism Network. Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018).

[4] HGT: Heterogeneous Graph Transformer. Hu, Ziniu, et al. "Heterogeneous graph transformer." Proceedings of the web conference 2020. 2020.

PRELIMINARY RESULTS
Preliminary Results:

– Demonstrate promising initial performance on IEEE 13-bus and 123-bus test feeders.
– Transformer-based models (e.g., GIN, GAT) outperform baseline GCN models.

– Cross-task training on infilling and forecasting task variations with hard sharing of encoder layer 
parameters shows potential for integration into general GridFM context.

Comparison of reconstruction error across range of WLS and 

GNN methods [1-4]. Transformer models show most 

promising results (GAT, HGT) show significantly lower error.



STATE ESTIMATION EXTENSION: ANOMALY DETECTION
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▪ Latent grid state estimate from shared 

encoder layers can be diffed across 

time steps;

▪ State vector variation across time 

steps exceeding threshold -> potential 

anomaly;

▪ Tested on solar inverters, AMI, and 

solar home data streamed from at  1s 

to 15 minutes time resolutions;

▪ Nominal vs Abnormal data clearly 

linearly separable in shared encoder 

latent space;

▪ Next steps: Incorporate into cross-task 

training on other GridFM tasks.



PRELIMINARY RESULTS: OPTIMAL POWER 
FLOW

▪ Edge features are important to 

incorporate in training, especially 

for physics-informed learning.

▪ Transformer- and graph-attention 

mechanisms outperform.

▪ Generalization performance to 

unseen network systems (train on 

multiple networks, prediction with 

the remaining one)

Our current single-task model 

has about 1.6B parameters 

on 1.5TB ACOPF data

> 1000x faster inference compared with optimization on grid with 2000 nodes



TASK LAYERS 

▪ SCUC: 

—Classification and regression task
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GRIDMIND – AI AGENTS

▪ Provide ACOPF AI Agent show case

▪ Integrate human-in-the-loop functionalities to 

ensure optimal performance and reliability

▪ Function calls to existing tools 

▪ Intuitive chat interface and seamless tool 

calling capabilities

▪ Inquiry status, modify the system, ask question



ACOPF AGENT

Agent thinking and tool calling Agent response

Chat interface

Pandapower solver
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SUMMARY

GridMind (Agent)
• LLM Interface

• Multi-Agent Reasoning
• RAG over Regulatory/SCADA

GridFM (Intelligence)
• Graph-based FM

• Multimodal learning
• Pre-trained/fine-tuned models

Data Sources & Tool Box
Simulations, Historical Data, Documents

AI Testing Sandbox
Robustness Evaluation, Red-Teaming

Prompts

Interpretable
Output

Inference
Queries

Predictions &
Representations

Testing Targets Robustness Feedback

Training Data & 
Simulations

Agent Behaviors & 
Testing Inference

Simulation 
Queries

Simulation 
Outputs

ACOPF SCUC
Capacity 

Expansion
Reliability 

Assessment
Transient 
Stability

Distribution System 
Estimation
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