

August 13-14, 2025 | Des Plaines, Illinois

Al for a Digital Thread and Asset Traceability

Alicia Farag Locusview

The Big Idea

Al can accelerate the adoption of a Digital Thread that enables the flow of data from suppliers into a utility's system of record without requiring IT transformations by using Al agents with industry standards and ontologies to convert unstructured analog data into structured digital datasets

Digital Thread

- Utilities need high quality accurate asset data in systems of record
 - Existing use cases engineering, compliance, operations
 - New use cases AI, analytics, augmented reality, drones
- Current workflows often involve manual interpretation and transcription, especially when receiving data from third parties
- We need a Digital Thread that enables the flow of data from suppliers to utilities in a digital, standardized format

Digital Thread Asset Traceability Use Cases

- MTR verification during intake
 - "We waste so much time chasing MTRs"
- Weld procedure verification
- Pressure test verification
- MAOP and TVC verification during project close-out
 - "We spend days combing through MTRs"
- Ensuring fabrications were constructed according to standards and specifications
 - "This is where most of our verification problems are"
- Getting certification and test data into systems of record
- Linking inspection results to the correct asset
- Addressing recalls and systemic performance issues

Unstructured Structured Data

- Many workflows between utilities and suppliers (service providers and manufacturers) still transfer analog data in an unstructured format
 - Spec sheets, test reports, fabrication reports, quality inspection reports, as-built drawings, print lines, nameplates
 - Variable formats and terminology
- Unstructured data requires human interpretation, transcription, and manual data entry into systems of record
- Al can convert unstructured data into structured data

Heat Number Ven	dor Name	Description	Htg Du	te: 07/17/19	
A008841 SOE		APISL X52	4-1/2*8.237*		
Coli	unbus, HS, USA	WALL(10.808)	BANE, DRL. PER	10.86 lb/ft	
		7/2	A CONTRACTOR OF THE PARTY OF TH		
		CHEMICAL AN			
	9 8 Ni				
	00 0.008 0.002 0.040	0.040 0.120 0.0	10 0.220 0.033	0.001 0.028 0.000	12 0.0013
	1 SN: 0.005 N:				
	90 0.007 0.000 0.039	0.076 9.133 0.0	13 0.240 0.014	0.004 0.038 0.000	3 0.0030 115
	0 5.007 0.000 0.040				
	SN: 0.006 N:	0.076 0.133 0.0	13 0.240 0.014	0.003 0.038 0.000	4 0.0029
N41 0.044		ACCEPTANCE ONLY	TERIA CERCH-	0.25	
		MECHANICAL PROP			
Sthailt 71.5	TS(kail) 77.4 EL			0.92	
rientation:	Transverse	Specimen(s) Dr	nergy(ft/lbe.)		* Shear
	.394" × .197" × 2.1			H/A	
	0	2	75	H/A	100
ocation		1	71	H/A	100
		Average:			
		EPTANCE CRITERIA			
	COM				
	OSTATIC TEST PRESSUR				
	TO THE 46TH EDITION		LTCM: TON		
	CY WELDED PRODUCT	and a			
	WEST THE AT LEAS PROP				
HELD SEAM AN	MEALING AT 1600 DECK				
WELD SEAM AN ULTRASONIC T	ESTED TO N-10 HOTCH		1		
WELD SEAM AN ULTRASONIC T FLATTENING T	ESTED TO H-10 HOTCH EST PASSED				
HELD SEAM AN ULTRASONIC T FLATTENING T 1 INCH LNG S	ESTED TO H-10 MOTON EST PASSED TRIP SPECIMEN	1/8 DEILLED NOLE			
HELD SEAM AN ULTRASONIC T FLATTENING T 1 INCH LNG S	ESTED TO H-10 HOTCH EST PASSED	1/8 DRILLED HOLE 8, ARME EASIS-04			
HELD SEAM AN ULTRASORIC T FLATTENING T 1 INCK LSG S THIS MATERIA MEETS HARDNE	ESTED TO N-10 MOTCH EST PASSED TRIP SPECIMEN L MEETS :ASTM ASSB-1 API SL POL ES REQUIREMENTS OF M	1/8 DRILLED HOLE #, ABME EASIN-04 2 GRADE XS2M ACE NNO 175/ISO	LATEST EDITION	A.2.1.1	
WELD SEAM AN ULTRASORIC T FLATTENING T 1 INCK LOG S THIS MATERIA MEETS HARDNE MEETS ISO 10	ESTED TO N-10 MOTCH EST PASSED TRIP SPECIMEN L HERTS :ASTM ASSB-1 API SL PGL ES REQUIREMENTS OF M 474 3.1.8/EM 10284:	1/6 DRILLED HOLE #,ARME SASIR-04 2 GRADE X52H ACE NWO 175/ISO 3.1 / STANDARDS	LATEST EDITION	A.2.1.1	
WELD SEAM AN ULTRASONIC T FLATTENING T 1 INCK LOG S THIS MATERIA MEETS MADDRE MEETS 180 10 STEEL SUPPLE	ESTED TO N-10 MOTCH EST PASSED TRIP SPECIMEN L MEETS :ASTM ASSB-1 API SL POL ES REQUIREMENTS OF M	1/0 DRILLED HOLD 0, ASME SASSE-04 2 GRADE XSSM ACE MRO 175/ISO 3.1 / STANDARDS U.S.A	LATEST EDITION	A.2.1.1	

Industry Standard Data Models

- An AI-enabled Digital Thread needs industry standard data models!
- Some standards describe data models in general terms with a list of mandatory requirements, but do not provide a real data model
- API 5L and RP 5MT
 - API 5L provides a list of required attributes in an MTR
 - API 5MT provides a digital data model for MTRs
 - MTR ontology for Al

10.1.3 Inspection Documents for PSL 2 Pipe

10.1.3.1 The manufacturer shall issue an Inspection Certificate 3.1.B in accordance with ISO 10474:1991 or an Inspection Certificate 3.1 in accordance with EN 10204:2004. Alternatively, it specified in the purchase order, an Inspection Certificate 3.1.A or 3.1.C in accordance with ISO 10474:1991 or an Inspection Certificate 3.2 in accordance with EN 10204:2004 shall be issued.

10.1.3.2 The following information, as applicable, shall be provided for each order item:

- a) specified outside diameter, specified wall thickness, pipe grade, PSL, type of pipe, and the delivery condition;
- chemical composition (heat and product) and carbon equivalent (product analysis and acceptance criterion);
- tensile test results and the type, size, location, and orientation of the test pieces;
- d) CVN impact test results; the size, orientation, and location of the test pieces; the test temperature; and the acceptance criteria for the specific test piece sizes used;
- e) for welded pipe, DWT test results (individual and average test results for each test);
- specified minimum hydrostatic test pressure and specified test duration;
- g) for welded pipe, the method of nondestructive weld inspection (radiological, ultrasonic, or electromagnetic) used and the type and size of reference indicator or IQI used;

h)	for	SML	s
	par	ticle)	us

i)	for	HFW	pig

j) for pipe wit Annexes M

k) name and

Table A.1—Essential Data Elements to Provide Electronically

No.	Data type	Information/Guidance and Restrictions b	Data Format	e-label	API 5L ^a References
1	Z number	Test unit and/or data linking pipe to the appropriate MTR inspection document	Text or number	ZZZZ	3.1.60 11.2.1 j)
2	Pipe number	Unique identifier j (also see NOTE 1)	Text or number	PNUM	1/2
3	Serial number	Unique identifier of the final shipped joint/bundle j.k	Text or number	SNUM)-,
4	Heat number	State the heat number	Text or number	HNUM	
5	MTR number/identifier	State the related MTR number(s) or identifier(s) as they appear on the MTR	Text or number	MTRN	-
6	Date of certification	The date that appears on the hard-copy MTR	Default spreadsheet date format b (e.g. "MM/DD/ YYYY")	DOCE	-
7	Facility name for pipe manufacturer m	Actual name of the manufacturer's facility that produced the pipe, as detailed on the facility's certificate or other appropriate documentation (if any) issued to them recognizing conformance to API 5L	Text	FNPM	10.1.3.2 k)
8	Facility address for pipe manufacturer ^m	Actual physical address/location of the manufacturer's facility that produced the pipe, as detailed on the facility's certificate or other appropriate documentation (if any) issued to them recognizing conformance to API SL	Text	FAPM	10.1.3.2 k)
9	Facility name for plate/ coil manufacturer	Actual name of the facility that produced the coll/plate	Text	FNPC	10.1.3.2 k)
10	Facility address for plate/coll manufacturer	Actual physical address/location of the facility that produced the coil/plate	Text	FAPC	10.1.3.2 k)
11	Facility name for steelmaking	Actual name of the facility that produced the	Text	FNSM	10.1.3.2 k)

Probabilistic vs Deterministic

- LLMs are probabilistic resulting in hallucinations and unpredictable output
- An ontology constrains an LLM's behavior by anchoring it to verifiable structures and rules
 - wall thickness is always a number, usually measured in inches or mm, but sometimes described as a schedule
- LLMs with an ontology can use structured relationships to produce answers instead of "guessing"
- LLMs with an ontology are more deterministic, predictable, and auditable

Ontologies and Knowledge Graphs

Ontology

- Formal, structured representation of knowledge within a domain - vocabulary, concepts, and relationships
- Provides a common vocabulary and enables semantic mapping (Outside Diameter = Pipe OD = OD = Size)
- Acts as the "schema" that AI uses to interpret, organize and reason with unstructured data

Knowledge Graph

 Specific implementation of an ontology using data from various sources

MTR Example

- Ontology provides an industry standard dictionary of MTR terms and relationships
 - Pipe has a diameter and a material grade
 - Diameter = OD = Outside Diameter = Size
- Knowledge Graph links heat numbers to materials in an engineering drawing
 - Heat number 123456 is linked to pipe #12 in engineering drawing 5
- Computer Vision extracts data from an MTR
 - Heat numbers, chemical composition, mechanical tests, manufacturer data
- Trained AI makes sense of human language within the MTR
 - Understands that "passed test on 2/5" means that the pipe passed the hydrostatic pressure test on February 5, 2024
- Trained AI converts industry jargon into defined data attributes
 - o Convert a product description "5L 16.000 0.500 82.85# X52 HFW/ERW" into specific attributes

Locusview R&D

- Converting traditional test reports into digital datasets
 - MTRs into API 5MT compliant datasets
 - Certificates of Compliance
 - Assembly/fabrication closing packets
- Extracting key attributes from images
 - Nameplates
 - Fabrication reports
 - Pressure test charts
 - Digital interfaces

Optical Character Recognition (OCR)


```
MILL TEST CERTIFICATE AXIS Customer: Sales Order: Invoice No.: ATMOS Energy 0630004629 1600048649 PIPE AND TUBE PO Box
650205 PO: Date of Issue: 11as,TX,75265 222890 03/27/2024 AXIS PIPE AND TUBE, LLC.
"Certificate No.:" is found in a cell (row 1, column 1) in table 1.
"1600048649-2" is found in a cell (row 1, column 2) in table 1.
1451 Louis E. Mikulin Rd.
"Product Description:" is found in a cell (row 2, column 1) in table 1.
"5L 12.750 0.375 49.61# X528DRH100W32P2" is found in a cell (row 2, column 2) in table 1.
"Specification:" is found in a cell (row 3, column 1) in table 1.
"5L 46th Edition May 2019" is found in a cell (row 3, column 2) in table 1.
TEL. (979) 703-6847 FAX(979) 703-6847
"Heat Number" is found in a cell (row 1, column 1) in table 2.
"Lot Number" is found in a cell (row 1, column 2) in table 2.
"Mat Number" is found in a cell (row 1, column 3) in table 2.
"Steel Making / Coil Rolling" is found in a cell (row 1, column 4) in table 2.
"311211C26" is found in a cell (row 2, column 1) in table 2.
"LT24079001" is found in a cell (row 2, column 2) in table 2.
"344930" is found in a cell (row 2, column 3) in table 2.
"Ternium Brasil (tda. - BR / Ternium México, S.A. de C.V. - MX" is found in a cell (row 2, column 4) in table 2.
"Mechanical" belongs to "Mechanical Properties" and is found in a cell (row 1, column 15) in table 3.
"Properties" belongs to "Mechanical Properties" and is found in a cell (row 1, column 16) in table 3.
"Tensile" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 2) in table
"Test" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 3) in table 3.
  " belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 3) in table 3.
"Strip" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 4) in table 3.
 "Specimen" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 5) in table
"Gauge" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 6) in table 3.
"Length" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 7) in table
"2" belongs to "Tensile Test - Strip Specimen Gauge Length 2" and is found in a cell (row 2, column 7) in table 3.
"Temp" belongs to "Temp (F) 32" and is found in a cell (row 2, column 10) in table 3.
"(F)" belongs to "Temp (F) 32" and is found in a cell (row 2, column 11) in table 3.
"32" belongs to "femp (F) 32" and is found in a cell (row 2, column 11) in table 3.
"CVN" is found in a cell (row 2, column 14) in table 3.
"Temp" belongs to "Temp (F) 32" and is found in a cell (row 2, column 18) in table 3.
"(F)" belongs to "Temp (F) 32" and is found in a cell (row 2, column 19) in table 3.
"32" belongs to "Temp (F) 32" and is found in a cell (row 2, column 19) in table 3.
"Loc. /" is found in a cell (row 3, column 1) in table 3.
"Size" is found in a cell (row 3, column 2) in table 3.
"0.5%EUL" is found in a cell (row 3, column 3) in table 3.
"U.T.S." is found in a cell (row 3, column 4) in table 3.
"U.T.S." is found in a cell (row 3, column 5) in table 3.
"Y/T" is found in a cell (row 3, column 6) in table 3.
"E.L." is found in a cell (row 3, column 7) in table 3.
"Hardness" is found in a cell (row 3, column 8) in table 3.
"Body" is found in a cell (row 3, column 11) in table 3.
"Shear" belongs to "Shear Area" and is found in a cell (row 3, column 14) in table 3.
```


Trained AI Model

```
MILL TEST CERTIFICATE AXIS Customer: Sales Order: Invoice No.: ATMOS Energy 0630004629 1600048649 PIPE AND TUBE PO Box
650205 PO: Date of Issue: 11as,TX,75265 222890 03/27/2024 AXIS PIPE AND TUBE, LLC.
"Certificate No.:" is found in a cell (row 1, column 1) in table 1.
"1600048649-2" is found in a cell (row 1, column 2) in table 1.
1451 Louis E. Mikulin Rd.
"Product Description:" is found in a cell (row 2, column 1) in table 1.
"5L 12.750 0.375 49.61# X528DRH108W32P2" is found in a cell (row 2, column 2) in table 1.
Bryan TX 77887
"Specification:" is found in a cell (row 3, column 1) in table 1.
"5L 46th Edition May 2019" is found in a cell (row 3, column 2) in table 1.
TEL. (979) 703-6847 FAX(979) 703-6847
"Heat Number" is found in a cell (row 1, column 1) in table 2.
"Lot Number" is found in a cell (row 1, column 2) in table 2.
"Mat Number" is found in a cell (row 1, column 3) in table 2.
"Steel Making / Coil Rolling" is found in a cell (row 1, column 4) in table 2.
"311211C26" is found in a cell (row 2, column 1) in table 2.
"LT24079001" is found in a cell (row 2, column 2) in table 2.
"344930" is found in a cell (row 2, column 3) in table 2.
"Ternium Brasil Ltda. - BR / Ternium México, S.A. de C.V. - MX" is found in a cell (row 2, column 4) in table 2.
"Mechanical" belongs to "Mechanical Properties" and is found in a cell (row 1, column 15) in table 3.
"Properties" belongs to "Mechanical Properties" and is found in a cell (row 1, column 16) in table 3.
"Tensile" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 2) in table
"Test" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 3) in table 3,
"-" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 3) in table 3.
"Strip" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 4) in table 3.
"Specimen" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 5) in table
"Gauge" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 6) in table 3.
"Length" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 7) in table
"2"" belongs to "Tensile Test - Strip Specimen Gauge Length 2"" and is found in a cell (row 2, column 7) in table 3.
"Temp" belongs to "Temp (F) 32" and is found in a cell (row 2, column 10) in table 3.
"(F)" belongs to "Temp (F) 32" and is found in a cell (row 2, column 11) in table 3.
"32" belongs to "Temp (F) 32" and is found in a cell (row 2, column 11) in table 3.
"CVN" is found in a cell (row 2, column 14) in table 3.
"Temp" belongs to "Temp (F) 32" and is found in a cell (row 2, column 18) in table 3.
"(F)" belongs to "Temp (F) 32" and is found in a cell (row 2, column 19) in table 3.
"32" belongs to "Temp (F) 32" and is found in a cell (row 2, column 19) in table 3.
"Loc. /" is found in a cell (row 3, column 1) in table 3.
"Size" is found in a cell (row 3, column 2) in table 3.
"0.5%EUL" is found in a cell (row 3, column 3) in table 3.
"U.T.S." is found in a cell (row 3, column 4) in table 3.
"U.T.S." is found in a cell (row 3, column 5) in table 3.
"Y/T" is found in a cell (row 3, column 6) in table 3.
"E.L." is found in a cell (row 3, column 7) in table 3.
"Hardness" is found in a cell (row 3, column 8) in table 3.
"Body" is found in a cell (row 3, column 11) in table 3.
 Shear" belongs to "Shear Area" and is found in a cell (row 3, column 14) in table 3.
```


Heat Number	311231C26	311211C26		
Date of Certification	03/27/2024	03/27/2024		
Facility Name for Pipe Manufacturer	AXIS PIPE AND TUBE, LLC.	AXIS PIPE AND TUBE, LLC.		
Facility Address for Pipe Manufacturer	1451 Louis E. Mikulin Rd.Bryan TX 77807	1451 Louis E. Mikulin Rd. Brya		
Facility Name for Plate/Coil Manufacturer	Ternium M\u00e9xico, S.A. de C.V.	Ternium M\u00e9xico, S.A. de		
Facility Address for Plate/Coil Manufacturer	MX	MX		
CVN Average Shear Area Percent	97	100		
Certified Hydrostatic Test Pressure Value	3,070.00	3,070.00		
Certified Hydrostatic Test Pressure Value Units	psi	psi		
Certified Hydrostatic Test Pressure Value Duration (seconds)	10.00	10.00		
NDT Statement	We hereby certify that the material herein ha the above spe We hereby certif			
Carbon (C)	0.05	0.05		
Manganese (Mn)	1.02	0.97	0.97	
Copper (Cu)	0,01	0,01	1	
Customer Purchase Order	222890	222890		
Tensile Test Type	Strip Specimen	Strip Specime	Strip Specimen	
Hardness Test Type	HRB	HRB		
Chemistry Test Type	н	P	Н	

Optical Character Recognition (OCR)

JSHP SINGLE PHASE TRANSFORMER kVA 75 STANDARD ANSI/IEEE HV 34500GRDY/19920 C57.12. 38 LV 240/120 IMPEDANCE (085°C) 2.11 % FREQUENCY 60Hz TEMPERATURE RISE 65 °C COOLING ONAN HV/LV CONDUCTOR AL/AL HV BIL 150kV OIL PCB <1 PPM AV BIL 30kV OIL 65 Gallons SERIAL NO. HPT00330176E POLARITY: ADDITIVE DATE OF MFG. 06/2023 INSTRUCTION BOOK:OLB. 319.020 ACCESSORIES MASS (Ibs) CORE & COIL (UNTANKING) 759 CL FUSE BAYONET OIL WEIGHT 500 X3 X2 X1 TOTAL WEIGHT 1475 HIA HIB LV DOE 2016 COMPLIANCE SAP# 269219 JSHP TRANSFORMER 304 STAINLESS

Trained AI Model

JSHP SINGLE PHASE TRANSFORMER kVA 75 STANDARD ANSI/IEEE HV 34500GRDY/19920 C57.12. 38 LV 240/120 IMPEDANCE (085°C) 2.11 % FREQUENCY 60Hz TEMPERATURE RISE 65 °C COOLING ONAN HV/LV CONDUCTOR AL/AL HV BIL 150kV OIL PCB <1 PPM AV BIL 30kV OIL 65 Gallons SERIAL NO. HPT00330176E POLARITY: ADDITIVE DATE OF MFG. 06/2023 INSTRUCTION BOOK:OLB. 319.020 ACCESSORIES MASS (Ibs) CORE & COIL (UNTANKING) 759 CL FUSE BAYONET OIL WEIGHT 500 X3 X2 X1 TOTAL WEIGHT 1475 HIA HIB LV DOE 2016 COMPLIANCE SAP# 269219 JSHP TRANSFORMER 304 STAINLESS

Entity value: JSHP Confidence: 100.00%

Number of Phases

Entity value: SINGLE PHASE Confidence: 100.00%

Frequency

Entity value: 60Hz Confidence: 100.00%

Temperature_Rise

Entity value: 65 °C Confidence: 100.00%

NER

PCB_lessthan_1PPM_Statement

Entity value: OIL PCB <1

PPM

Confidence: 100.00%

LV BIL Rating

Entity value: 30kV Confidence: 100.00%

CoreandCoil_Weight

Entity value: 759 Confidence: 100.00%

Liquid_Weight

Entity value: 500 Confidence: 91.00%

Implementation

- Software Releases
 - Q3 2025 TRACE for MTR/COC upload and real-time verification
 - Q4 2025 AI data extraction (basic traceability attributes for field verification)
 - Q1 2026 AI data extraction (full dataset for automated compliance verification)

- Implementation
 - Q4 2025 pilot project
 - Q2 2026 production implementation

Other Use Cases

- Converting legacy sketches, notes, and forms into digital datasets that can be consumed by systems of record and analytical tools
- Converting sensor data from fusion machines, bore profiles, and pressure tests
- Extract dimension lines from pictures

Now possible . . .

- Al is able to cost-effectively create niche agents to solve industry specific problems like linking COCs and NDT records to an engineering drawing
- Reduce the burden of implementation on suppliers and utilities by using AI to create agents to automate compliance with industry standards
- But, Al tools must be integrated into an end-to-end workflow with integrations to upstream and downstream systems

Summary

- Utilities need to have high quality asset data in systems of record for existing use cases as well as future use cases
- A Digital Thread enables the flow of data from supplies into utility's systems of record without manual data transfer
- Al can accelerate the Digital Thread by converting unstructured data into structured data,
 even for niche use cases
- Industry standard data models, together with ontologies and knowledge graphs, can improve the accuracy and reliability of Al agents
- AI can reduce the burden of implementing the Digital Thread for both suppliers and utilities
- Al must be integrated into end-to-end workflows to truly provide value