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With a PhD in statistical astrophysics, David J Corliss, PhD is a Senior Data 
Scientist at DTE Energy, an electric and gas utility based in Detroit, MI. He is 

active in the American Statistical Association, where he serves on the Board of 
Directors, writes a monthly column in Amstat News on data for social good, and 
teaches courses on ethical best practices in data, analytics, and AI. Dr. Corliss is 

the founder of Peace-Work, a volunteer cooperative of statisticians, data 
scientists and other researchers applying analytics in issue-driven advocacy.
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Introduction: Weather Analytics
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DTE Energy Weather Analytics Model: Project Goal
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DTE Weather Analytics Model: Concept Flow Chart
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DTE Weather Analytics Model: Business Model

Everything depends on a close 

partnership between three key 

stakeholders
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Physics-Informed Artificial Intelligence
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Physics-Informed AI

The integration of the principles, 

equations, and constraints of 

physical science to inform 

decision science, increase 

accuracy, and optimize 

processes and results. 

• Application of atmospheric physics in 

weather forecasting algorithms

• Analysis of the equations of motion as 

system constraints  

• Inclusion of energy transfer mechanisms 
in AI describing physical processes

• Estimating system and algorithm 

performance characteristics based on 

physical limitations 
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Physics-Driven Features in Weather Impact Analytics

Drawing: Wadler, J. et al., AOML Communications / NOAA 2022

Wind shear reduces 

storm structure

Energy flow from warm 

air moving into a storm 

Temperature Differential: Cold fronts 

generate stronger thunderstorms
HC

Humidity: Dry or moist 

air moving into a storm

Capping: stable air layers aloft 

hinder storm development

Weather patterns often last for 

several days then change => LSTM



Weather Analytics: Challenges and Considerations
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Challenges and Considerations: Available Data

Data: ISU Weather Forecast Archive 
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Challenges and Considerations: Geography

Top Factors Driving Regional Differences

• Number of customers in each area

• Local differences in the severity of weather events 

• Close to the lakes vs. inland

• Seasonal changes have different timing 

• Land use - buildings vs houses vs farms
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Challenges and Considerations: Bridging Physics to Forecasts 
Factors included in one or more local models

• Geographic Location

• Seasonality

• Temperature

• Dew Point

• Difference between Temperature and Dew Point

• Precipitation: % chance, quantity next 12 hours 

• % Chance of Thunderstorm Next 6 or 12 Hours

• Probability of Wind Gust Over 25 / 35 / 45 mph 

• Wind Direction 

• Visibility 

• Intensification: an increase in severity of weather 
between the 72-hour and 48-hour forecasts  

Decision Tree identifying important features



Weather Analytics: Methods and Algorithms
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Methodology: Algorithms

Regression-Type Methods: Predicts the Expected Number of Outages in a Day

• Multiple Linear Regression

• RandomForest

• Neural Networks - CNN and LSTM

• XGBoost

Classifier Methods: Predicts Weather Impact by Category – Normal, High, Storm, etc.

• Logistic Regression

• Decision Tree

• KNN

• SVM
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Methodology: Geo-Spatial Localization and Boosting

A

B

Due to regional differences, each DTE Service Center 

gets its own model

Localization and boosting results in more accurate 

predictions
C

Boosting: numbers for each area are added for an 

overall total, reducing the impact of noise
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Methodology: Time Series Techniques

A

B

Due to regional differences, each DTE Service Center 

gets its own model

Localization and boosting results in more accurate 

predictions
C

Boosting: numbers for each area are added for an 

overall total, reducing the impact of noise

Sequential Model Example: 

Similarity Analysis



Weather Analytics: Results, Metrics, and Conclusions
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Actual      Predicted      Prediction Range

Results: Metrics and Ensemble Model Performance
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Results: Responsible AI Practices at DTE Energy

A

B

Transparency: publicly available weather data, outage 

counts published via an Outage Map from DTE 

Commitment to Public Service: Advanced analytics and AI applied to 

serve the community by strengthening and protecting electrical service
D

Ethical Use: Customer-provided outage information is 

used to improve service with no hidden agenda or uses 

Bias Mitigation: Every model tested for bias at every 

stage from development, data selection, and model testing 
C
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• The DTE Energy Weather Analytics Model application predicts number of outages 48 
and 72 hours in advance using weather forecast data and historical outage counts. 

• Predictions are produced for outage count and impact level by date. 

• Multiple model techniques are used, including regression, clustering, Decision Tree, 
RandomForest, CNN, and LSTM.  

• An ensemble of methods provided the most accurate outage count predictions with 
fewest false negatives. 

• A separate version of each model is developed for each local area and then added 
together for a system-wide total.  

• CI/CD in analytics: models are constantly monitored and improved.

• Careful attention is paid to ethical best practices in model development and use.

Results: Scientific Summary and Conclusions
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Questions

?



Thank You!

David J Corliss, PhD

david.corliss@dteenergy.com
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