
Human Judgment in the Age of Al, IoT, and Digital Twins

Dr. Steve Liang

Professor and the Rogers IoT Research Chair, University of Calgary Founder and CTO, SensorUp

About Steve

Rogers IoT Research Chair Professor at the University of Calgary

Unifying fragmented sensor networks into a coherent sensor web to achieve real-time situational awareness, predictions, and real-world actions — all for the betterment of humanity.

Founder and CTO of SensorUp

Building a methane sensor web for emissions reduction, finding leaks and fixing them, one at a time

Chair, OGC SensorThings API Working Group and EmissionML Working Group

Lab Scientist, Creative Destruction Lab (Rockies and Texas)

Outline

- Sensors are everywhere
- Al predictions are now affordable
- GenAl agents are arriving
- The Digital Twin as the Al gym
- What should I tell my 7 and 9 years old about the future of work?

Sensors are Everywhere

Sensors are Everywhere

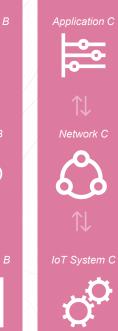
"The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it...(Weiser, 1991)

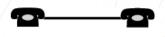
The Sensor Web will weave itself into our everyday lives until it is indistinguishable."

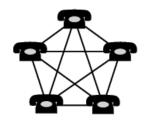
Steve Liang, 2005

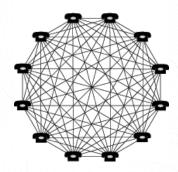
After 20 years, are we there yet?... kind of....

Imagine a THING

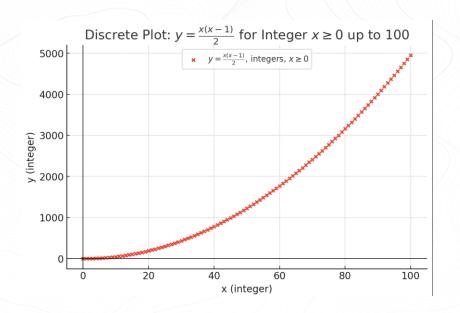

DARK DATA (events)

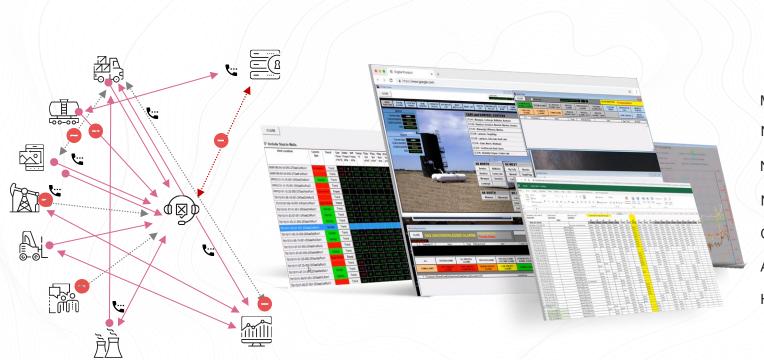





Today's IoT systems are siloed and fragmented.

It's like your body being a network of sensors where your eyes, ears, and hands never share what they sense.


Network Effect (Metcalfe's Law)



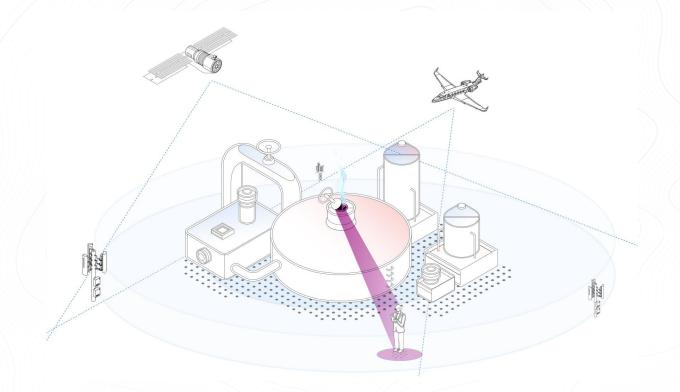
number of edges = n(n-1)/2

Labor Intensive, Expensive, Slow Response, Costly Mistakes

MULTIPLE DATA SILOS

NO REAL-TIME VISIBILITY

NO EARLY WARNINGS


NO AUTOMATION

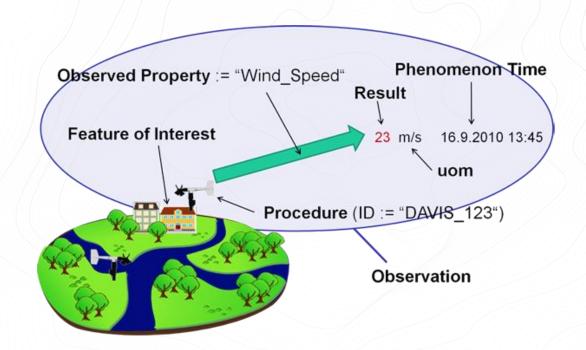
COMPLICATED PROCESSES

AD HOC COMMUNICATION

HUMAN ERRORS

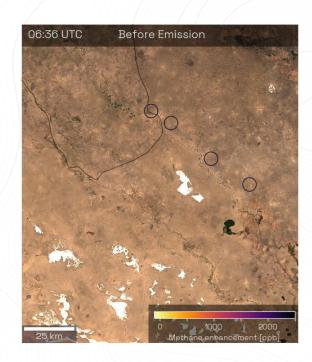
How do we integrate disparate sensing systems?

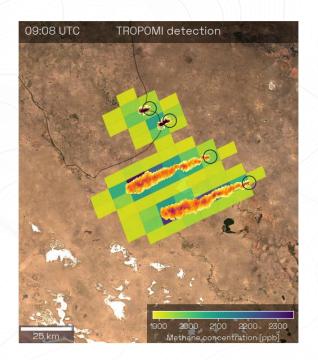
Observations vs Feature/Coverage


	Location	Properties			
		Property 1	Property 2		Property m
	(x_1, y_1)	Value 1	Value 2		Value ^m
	(x_2, y_2)	Value ¹	Value 2/2		Value ^m ₂
Feature 3	(x_3, y_3)	Value ¹ ₃	Value ² ₃		Value ^m ₃

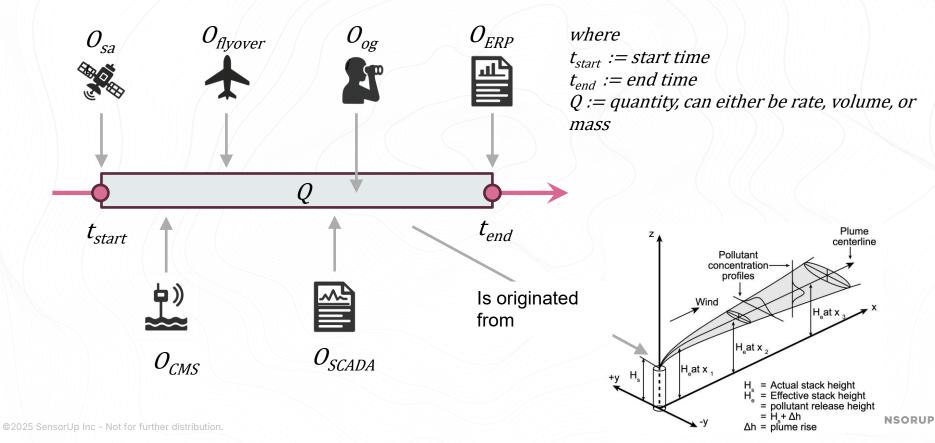
	(x_n, y_n)	Value 1 n	Value 2 n		Value m

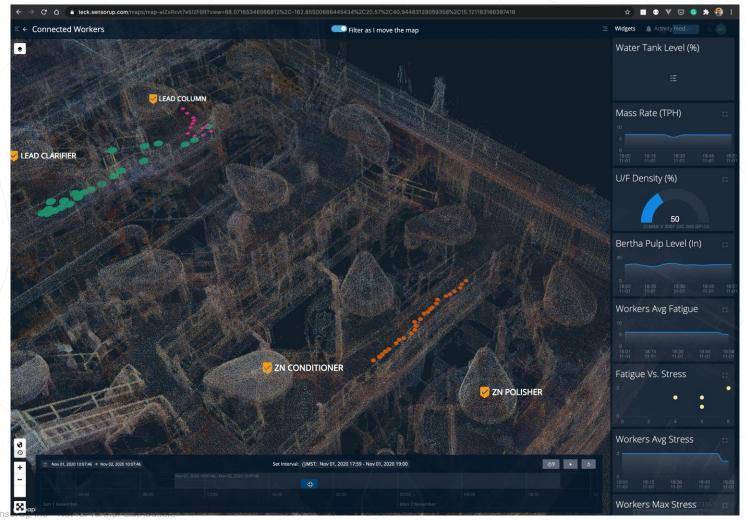
Coverage 2





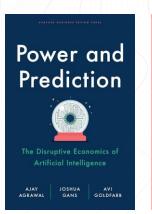
OGC/ISO 19156 Observation, Measurement, and Sample

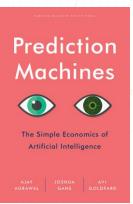

From Observations to Events – Emissions as an Example



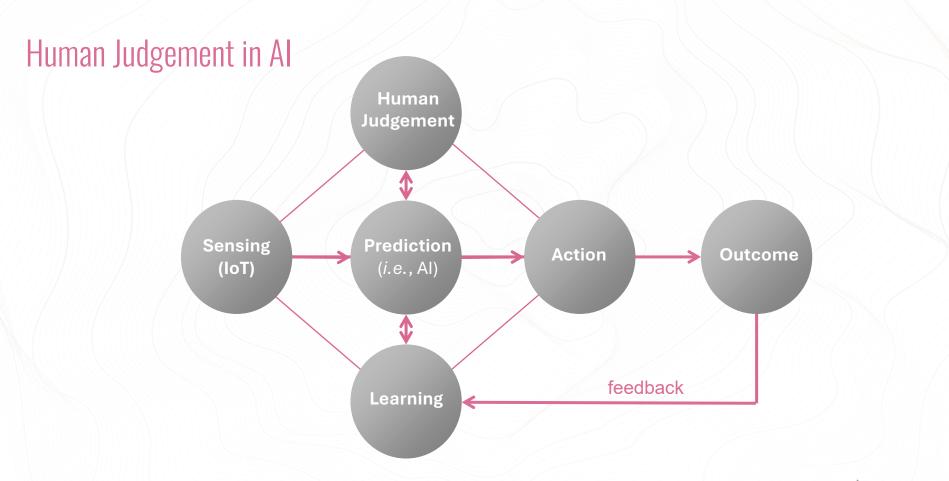
OGC Emission Event Modeling Language (EmissionML)

Everything will be sensor-ed up, becoming smart objects in a digital twin, and offering unprecedented visibility and automation.


Prediction (AI)



Al as Prediction Machines


- Al offers predictions and now it is getting affordable
- What is prediction? -- taking information you do have to generate information you don't have
- As prediction becomes cheaper, it gets applied in unexpected areas.
 - Self driving, LLM, etc.

Crank it up!!

What if the AI (recommendation engine) is so very accurate?

Shop

Ship

Receive

Amazon Anticipatory Shipping

Login

Disrupt SF 2019
Startups

Amazon Patents
"Anticipatory" Shipping —
To Start Sending Stuff
Before You've Bought It

With IoT and AI, every process will be just-in-time, *i.e.*, there will be no wait, no waste, and no accident.

Generative Al and Agents

Those tokens were words, some of the tokens of course could now be <u>images</u>, or <u>charts</u>, or <u>tables</u>, <u>songs</u> ... <u>speech</u>, <u>videos</u>. Those tokens could be anything.

Jensen Huang, CES 2025 Keynote

What is Generative AI?

 Generative Al generates complex and structured outputs, such as text or images.

Text (collection of words)

Image (collection of pixels)

Generative AI enables machines to generate <u>complex</u> and <u>structured</u> outputs

Write a 1000 words article titled "I have a dream"

How many possible combinations are there for composing a 1000 words article in English?
Assuming there are 1,000 commonly used words in English.

 $1000 \times 1000 \times 1000 \times 1000 \dots = 1000^{1000} = 10^{300}$

Finding the appropriate combination from nearly infinite possibilities.

Generative Al Basics

$$\{x_1, x_2, ..., x_j, ...\}$$
 $\{y_1, y_2, ..., y_i, ...\}$

Strategy: Generate only one y_i at a time in a fixed order.

Autoregressive Generation

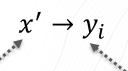
If Tokens are words → LM

$$x_{1}, x_{2}, ..., x_{j}, ... \rightarrow y_{1}$$
 $x_{1}, x_{2}, ..., x_{j}, ... y_{1} \rightarrow y_{2}$
 $x_{1}, x_{2}, ..., x_{j}, ... y_{1} y_{2} \rightarrow y_{3}$
 \vdots
 $x_{1}, x_{2}, ..., x_{j}, ... y_{1} y_{2} ... y_{T-1} \rightarrow y_{T}$
 $x_{1}, x_{2}, ..., x_{j}, ... y_{1} y_{2} ... y_{T} \rightarrow end$

Generative Al Basics

$$\{x_1, x_2, ..., x_j, ...\}$$
 $\{y_1, y_2, ..., y_i, ...\}$

Strategy: Generate only one y_i at a time in a fixed order.

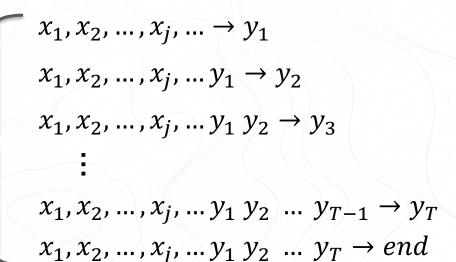

Each step performs the same task. $x' \rightarrow y_i$

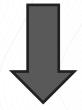
A collection of tokens are provided

Choose the next token (multiple choices quiz)

$$x_{1}, x_{2}, ..., x_{j}, ... \rightarrow y_{1}$$

 $x_{1}, x_{2}, ..., x_{j}, ... y_{1} \rightarrow y_{2}$
 $x_{1}, x_{2}, ..., x_{j}, ... y_{1} y_{2} \rightarrow y_{3}$
 \vdots
 $x_{1}, x_{2}, ..., x_{j}, ... y_{1} y_{2} ... y_{T-1} \rightarrow y_{T}$
 $x_{1}, x_{2}, ..., x_{j}, ... y_{1} y_{2} ... y_{T} \rightarrow end$

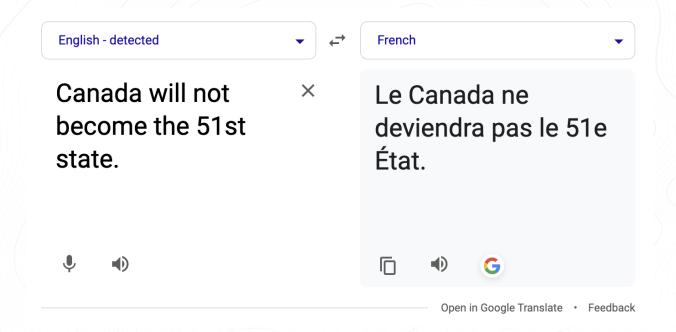

Each step performs the same task.



A collection of tokens are provided

Choose the next token

(multiple choices quiz)



$$\{z_1,z_2,\dots,z_{t-1}\}\to z_t$$

Input: image Output: text

Gen AI is not new

What's new in today's Gen AI tools, such as ChatGPT?

What's new in Today's Gen Al tools?

Specialist

This course is about Gen Al.....

translate

Generalist

Tell the tool what to do

Translate the following into Chinese

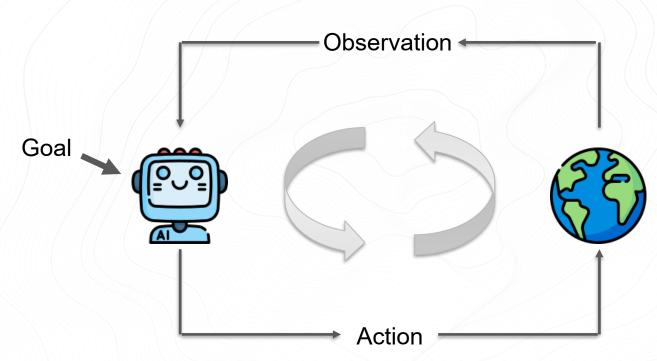
This course is about Gen Al.....

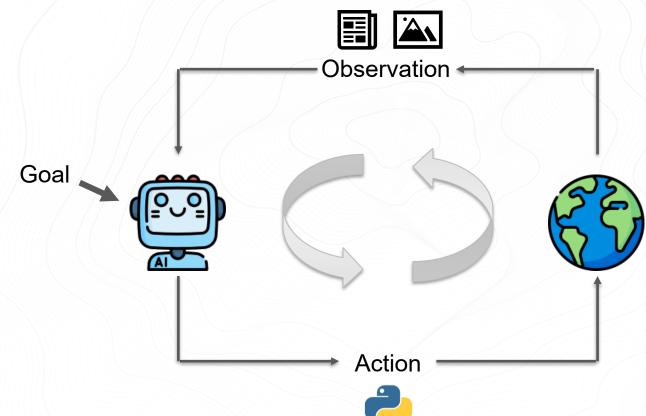
not design for a specific function

Traditional Al

RED SOF

Foundation Models





Al Agent

GenAl models are able to see, read, write, and use tools

Observation data is the fuel for AI, but very expensive to collect.

Wait... GenAl can create a digital twin for Al agents to observe and act...

Conclusion

IoT and Digital Twin: The Al Training Gym

- Sensors will be everywhere
- IoT sensors + Al predictions: ending delays, waste, and accidents for good.
- (Sensor) Data is the fuel for Al—but is still expensive, and unscalable
- Digital Twin accelerates the Al development cycle by simulating data and real-world feedback loops
- Wait! The creation of Digital Twins can be a bottleneck too!
- Al can also help generate Digital Twins, turning the bottleneck into a flywheel

What should I tell my 7 and 9 years old about the future of work?

"Liberating people from survival jobs could redefine what it means to be human, increasing our 'humanness' and expanding the diversity of our goals. Broader education may be needed, not to train for a job, but to pursue intellectual pursuits for their own merits, instead of a 'purpose' like a job."

Vinod Khosla, Khosla Ventures

While AI, IoT, and Digital Twins deliver data and predictions, humans remain the source of judgment and meaning.

