

August 13-14, 2025 | Des Plaines, Illinois

Clean Energy Network Analysis (CENA)

Ansh Nasta, Principal Energy Systems Analyst, GTI Energy
Matt Ives, Institute Energy Systems Analyst, GTI Energy
Derek Wissmiller, Research & Technology Advancement Director, GTI Energy

Today's Energy Systems

Electricity

Conventional molecules

Existing infrastructure

Net-Zero Energy Systems

Electricity

Conventional molecules

Existing infrastructure

New molecules

New infrastructure

Meta NZ Study

report available at gti.energy/meta-nz/

Meta-Analysis of U.S. Economy-Wide, Net-Zero Studies

- 1. Low Carbon Resources Initiative (EPRI, GTI Energy)
- 2. Open Energy Outlook (Carnegie Mellon University, NC State)
- 3. Evolved Energy Research
- 4. Princeton University
- 5. Decarb America (Bipartisan Policy Center, Clean Air Task Force, Third Way)

5 leading independent U.S. economy-wide studies

23 scenarios for least-cost pathways to net-zero

Net-Zero Energy Systems

Electricity

Conventional molecules

Existing infrastructure

New molecules

New infrastructure

Clean Energy Network Analysis (CENA)

What could the co-optimized deployment of gas infrastructure (NG/RNG/SNG, H2, CO2) look like in a net-zero future?

How can we answer regional questions using data from national netzero studies?

What is the role of existing gas infrastructure in net-zero energy systems?

How do we optimize building new infrastructure to move these new molecules?

First-of-a-kind analysis that performs a **simultaneous cost- based co-optimization of CO2 and H2 infrastructure relative to NG infrastructure**

Modeling Framework

Area of Interest (AOI): Appalachia

- Important energy-producing region for over a century
- Plentiful NG to produce H2
- Iron & steel industry that could use H2
- Large sources of CO2 to capture from
- Existing gas infrastructure & workforce
- ARCH2 hub

Selected counties in four states: KY, OH, PA, WV

Data Disaggregation: Net-Zero Scenarios

US

• How much hydrogen is produced via electrolysis in the US in 2050 under net-zero conditions?

Depending on available data

Region/State

• How much hydrogen is produced via electrolysis in the Ohio River Valley or in Pennsylvania in 2050 under net-zero conditions?

County-level data: population, GDP, truck stops

AOI

• How much hydrogen is produced via electrolysis in CENA's area of interest in 2050 under net-zero conditions?

Data Disaggregation: Net-Zero Scenarios

Low Carbon Resources Initiative (LCRI)

- 1. LCRI Opt-Tech

 Optimistic assumptions for CO2 transport and storage, electrolysis, and bioenergy
- 2. LCRI Lim-CCS Opt-Nuc Optimistic assumptions for electrolysis, reference assumptions for bioenergy, and no CO2 storage

Evolved Energy Research (EER)

- 1. EER Central Least-cost pathway for achieving net zero by 2050
- 2. EER Low Land

 Limits the amount of land available for building
 energy infrastructure due to environmental and
 societal constraints

	LCRI	LCRI	EER	EER
Net-Zero 2050 Values	Opt-Tech	Lim-CCS Opt-Nuc	Central	Low Land
H2 consumption total [Mt/yr]	0.13	0.63	2.43	2.88
Green H2 production total [Mt/yr]	0.00	0.63	1.38	1.77
Blue H2 production total [Mt/yr]	0.13	0.00	1.04	1.11
CO2 capture total [Mt/yr]	92.01	4.91	21.15	32.67
CO2 sequestration total [Mt/yr]	92.01	0.00	18.59	29.40
CO2 utilization total [Mt/yr]	0.00	0.00	2.56	3.27
RNG production total [EJ/yr]	0.02	0.03	0.07	0.09
SNG production [EJ/yr]	0.00	0.00	0.00	0.00
NG production total [EJ/yr]	3.71	0.04	3.71	4.99

CONFERENCE

Data Gathering: NG, RNG & SNG

Natural Gas (NG)

- Production: Gas processors > 50 MMcfd
- Transportation: ~73,000 km Pipelines

Renewable Natural Gas (RNG)

- 18 existing and 48 new RNG facilities
- Potential RNG production capacity of ~160,000 scfm

Synthetic Natural Gas (SNG)

None

Data Gathering: H2 & CO2

H2 production

• NGR+CC, electrolysis, BG+CC

H2 transportation

Pipelines

H2 storage

• Subsurface depleted gas reservoirs

H2 consumption

• Iron & steel, cement, ammonia, synthetic fuels, MHDVs, refineries

CO2 capture

• H2 production, power plants, cement/lime, ethanol

CO2 transportation

Pipelines

CO2 sequestration

• Geologic subsurface

CO2 utilization

• Synthetic fuels

Adapted from Lackey et al.

Adapted from Carbon Solutions

STATISTICS, ANALYTICS, AND GIS IN ENERGY CONFERENCE

Infrastructure Available for Optimization

Existing Natural Gas Pipelines

Potential H₂ & CO₂ Assets

Results of Net-Zero LCRI Scenarios

LCRI Opt-Tech

Amount	Opt-Tech	Lim-CCS Opt-Nuc	
Green H ₂ [Mt/yr]	0.00	0.63	
Blue H ₂ [Mt/yr]	0.13	0.00	
CO ₂ capture [Mt/yr]	92.01	4.91	

LCRI Lim-CCS Opt-Nuc

Results of Net-Zero EER Scenarios

EER Central

Amount	Central	Low Land	
Green H ₂ [Mt/yr]	1.38 1.77		
Blue H ₂ [Mt/yr]	1.04	1.11	
CO ₂ capture [Mt/yr]	21.15	32.67	

EER Low Land

Can we build it?

Pipelines (km)	LCRI Opt- Tech	LCRI Lim-CCS Opt-Nuc	EER Central	EER Low Land
New H ₂ Pipelines	3,763	3,523	4,801	4,602
New CO ₂ Pipelines	6,018	472	1,242	1,576
Total New Pipelines	9,781	3,995	6,043	6,178
Build Rate over 25 Years (km/yr)	391	160	242	247

- Total length of existing NG transmission pipelines in the CENA AOI is 73243 km
- 294 km of natural gas transmission pipelines were installed in WV in 2022
 - This build rate could lead to 7,000 km of new transmission pipelines in WV by 2050

Key Takeaways

- H₂ and CO₂ infrastructure are key to least-cost net-zero pathways in the U.S.
- New modeling tool enables co-optimized, geospatial planning of these assets
- High interconnectivity found, especially in Appalachian region scenarios
- Project-by-project planning may miss synergies and lead to inefficiencies
- Modeling supports broader planning, beyond immediate hub boundaries
- **Deployment is feasible**—pipeline build rates align with recent NG benchmarks

