GNSS is an Incredible...

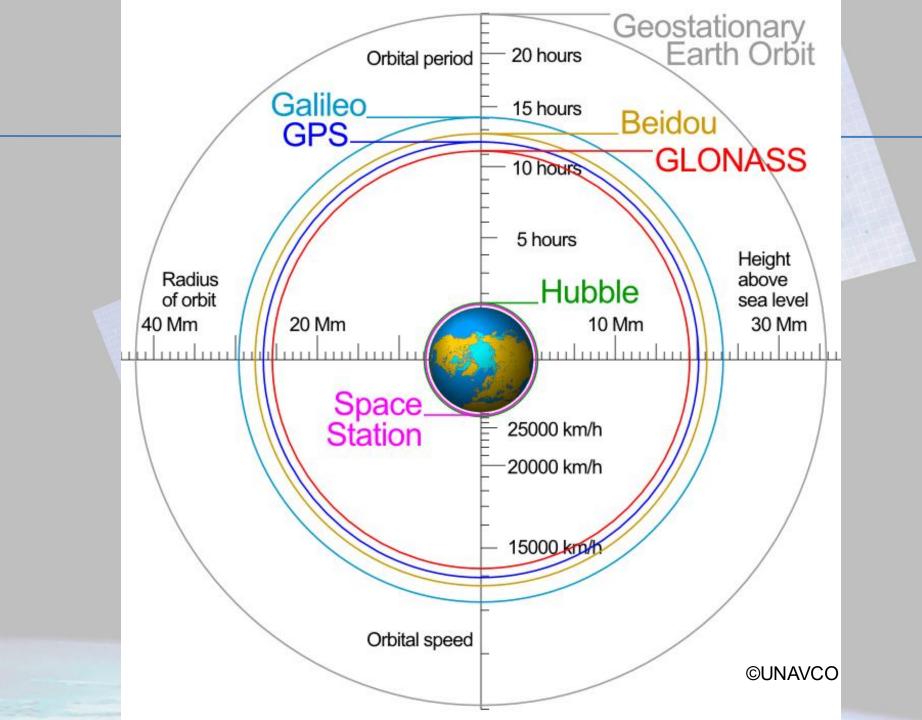
...y Flawed Technology

Speaker: Eric Gakstatter

Email: ericpg@gps-mapping.com

https://www.linkedin.com/in/eric-gakstatter-2081181/

GTI SAGE 2025


August 13, 2025

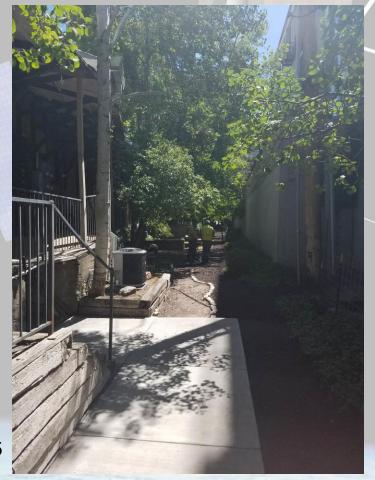
GNSS

- GPS: US Space Force constellation of ~31 satellites.
- Glonass: Russian constellation of ~24 satellites.
- Galileo: European Union constellation of ~24 satellites.
- BeiDou: Chinese constellation of ~30 global satellites.

Common GNSS Correction Types

- SBAS: Satellite-Based Augmentation System.
 Real-time sub-meter GNSS accuracy.
- RTK: Real-time Kinematic. Real-time, sub-inch GNSS accuracy.
- RTK Base Station: Sends RTK corrections to RTK users in the field, usually via internet.

Look how far High-Accuracy GNSS has come!


- 1980's Mission planning, post-processing. Meters of accuracy. GPS-only.
 - Midnight missions to collect hours of data. Meters of accuracy.
- 1990's GPS fully operational, and the dawn of GPS RTK
 - Commercial GPS receiver competition heats up.
- 2000's Glonass matures. SBAS, RTK Networks emerge
 - Glonass boosts RTK productivity. States begin deploying RTK networks. SBAS enables free and ubiquitous < 1 meter accuracy
- 2010's Beidou and Galileo step up.
 - GNSS satellite constellation size grows. Field productivity improved.
- 2020's Four constellations fully deployed. No more.
 - RTK bases upgraded. Field productivity improves more. Automotive markets drive GNSS chipset pricing down.

Has High-accuracy GNSS Technology plateaued?

- For four decades, the focus to improve GNSS has been on fully populating the constellations and adding better signals, each improving performance.
- The constellations are now fully populated and only launch replenishments when necessary. The new satellites offer marginal increase in performance.

- There are no more significant plans in the space infrastructure that will improve GNSS receiver performance on Earth.
- Why is that a problem?

Even with four fully deployed constellations, it still doesn't always work where we want it to work.

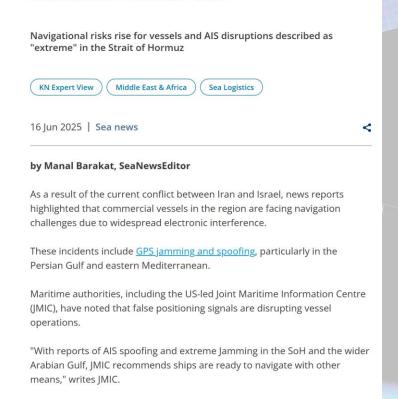
GNSS Test Course

- GNSS signals are very weak, and broadcast from 12,000 miles in space.
- High-accuracy GNSS requires a line-of-sight connection between the satellites and the GNSS receiver on the ground.
- Signals can be blocked or dithered or reflected by trees, buildings, terrain and even your body.
- This limitation frustrates users and project managers alike.
- . And...

 Up to this point, we've discussed unintended consequences of weak GNSS signals. However, there are people who possess ill intentions:

2013 - GPS jamming device (illegal) used near Newark airport

by a person who wanted to disable


his company's GPS tracking system.

\$32,000 penalty proposed by the FCC

- Up to this point, we've discussed unintended consequences of weak GNSS signals
- However, there are people who possess bad intentions
 Incidents of GPS jamming reported in

Haifa and Persian Gulf

©Copyright 2025

- What are we doing about this problem?
- PNT Exec committee back-up proposal
- ""Section 1618" of the Fiscal Year (FY) 2017 National Defense Authorization Act (NDAA) (P.L.114-328; December 23, 2016) requires the U.S. Department of Homeland Security (DHS) to address the needs for a GPS backup by identifying and assessing viable alternate technologies and systems."

Lat/Lon/Height - The Earth's barcode

High-accuracy GNSS is great for getting us close. Every inch on Earth is assigned a unique ID (latitude/longitude/elevation) whether GNSS works at that location or not. Example, a valve in the GTI building basement has a unique lat/lon/height but can't be mapped.


A Solution – Sensor Integration

- While GNSS can get us close, other sensors can assist in finishing the last mile.
- Sensors don't have a frame of reference (e.g. Lat/Lon/Height), so they need a starting position from GNSS.
- Mobile devices and other consumer electronics have driven sensor R&D over the past 15 years towards higherperformance, smaller size and lower cost.
- What are some of the sensors?

IMU (Inertial Measurement Unit)

- A combination of gyroscopes and accelerometers that measure movement, angular rate and orientation.
- Applications:

Smartphones
Image stabilization in cameras
VR headsets
Smart watches
Drones
Assisted and self-driving vehicles

Lidar (Light Detection And Ranging)

Uses a laser to measure time (thus distance) for the reflected light to return.

Applications:

Assisted and self-driving vehicles

Drones

Mobile mapping systems

Aerial mapping systems

2D/3D scanning

Sensor Integration

- GNSS for identifying our location on Earth
- . +
- . IMU for assisting when GNSS struggles or stops
- . +
- Lidar for determining distance to an object
- . +
- <insert new sensor>
- . =
- High-accuracy Last Mile asset mapping

Remember the Last Mile Problem?

Wait, what?

GNSS, IMU, and Lidar technology have been around for decades!


It's all about performance, size, power consumption and

cost.

And workflow!

.

Remember this?

Questions?

Eric Gakstatter

ericpg@gps-mapping.com

Portland, OR – Tampa, Fl

https://www.linkedin.com/in/eric-gakstatter-2081181/