

ARPA-E REMEDY Program <u>R</u>educing <u>E</u>missions of <u>M</u>ethane <u>Every D</u>ay of the <u>Y</u>ear

2023 Methane Connects

Jack Lewnard, Program Director Jack.lewnard@hq.doe.gov

October 5, 2023

Overview

► ARPA-E

- REMEDY overview, performers, and needs
 - Engines
 - Flares
 - -VAM
- Beyond REMEDY
 - International
 - EPA
 - DOE
 - National Academies

What is ARPA-E?

The Advanced Research Projects Agency-Energy (ARPA-E) is an agency within the U.S. Department of Energy that:

- Provides Research and Development funding for high-risk, high-reward, transformational ideas. FY2023 budget \$470 MM.
- Focuses on technologies that could fundamentally change the way we get, use and store energy: <u>high impact/high risk</u>
- Accelerates energy innovations that will create a more secure, affordable, and sustainable American energy future

3 yr, \$35MM program, diverse technologies/teams, systems approach, field tests in year 3

- Point source emissions
 - -50,000+ natural gas-fired engines in oil and gas and CHP/electric generation
 - -300,000 flares for oil and gas <u>"routine"</u> operations **not f**lares "temporarily" burning associated gas
 - -~250 coal mine ventilation shafts

Program update <u>https://arpa-e.energy.gov/2023-repair-annual-meeting</u>

REMEDY: Two phases with down-select, 36 months, \$35MM

<u>Stage 1</u> 12 teams, 12-18 mo., \$1-2M per team

Lab demonstration with $50/ton CO_2^e$ levelized cost of carbon and at least 98% methane destruction efficiency

Down-select based on lab demonstration performance and updated Phase 2 scope/schedule

<u>Stage 2</u> ~4-7 teams, 18-24 mo., up to \$3M per team Systems-level demonstration in field with \$40/ton CO_2^e levelized cost of carbon and at least 99.5% methane destruction efficiency Additional Metrics: Environmental and Economic

- 85-87% LCA CO₂e reduction
- No adverse environmental impacts
- No Hazardous Air Pollutants (HAPS, i.e., formaldehyde, etc.)

- 87% LCA CO2e reduction
- Meet or exceed New Source Performance Standards
- No HAPS or adverse environmental impacts
 If technology uses water
 - •LCA water use equal or less than CCS
 - •Meet or exceed NDES

REMEDY Teams Seeking:

Engines

Marquette: Field test site(s), system integrator

► Flares

- ACT: Field test site, application/commercialization partners
- U Michigan: Test site(s)
- U Minnesota: Bakken and Permian test sites
- Flare methane quantification
 - Verify 99.5% methane destruction efficiency

► VAM

- PCI: Field test site, system integrator

REMEDY Teams based on Methane Source

CHANGING WHAT'S POSSIBLE

Crankcase Gas Rerouting/Filtration System to Reduce Crankcase Methane Emissions from Lean-burn NG Engines

「FRPIIIAR™

Mahle: Methane Oxidation Catalysts and Heated Urea for Large NG-Fueled Engine

- ARPA-E REMEDY program
 - 3 years, approx. \$4m
- Goal: Eliminate methane slip in large leanburn NG engine exhaust using aftertreatment solution
- <u>Challenge</u>: Methane oxidation catalyst (MOC) compatibility with lean-burn NG engines (Oil&Gas, Marine, etc.):
 - Water inhibition at low exhaust temperatures prevents CH₄ conversion
- <u>Solution</u>: New hydrothermally stable MOC formulation
 - Lower light-off temperatures in high water environments
 - Upstream NO oxidation with heated urea to improve methane selectivity

MAHLE

SC OAK

RIDGE

Johnson Matthey

Powertrain

INNIO: Ultra Low Methane Slip Reciprocating Engine

Jim Zurlo, Principal Investigator James.Zurlo@innio.com

Technology Summary

- · New piston, and other components that dramatically reduces crevice volumes
- Weight optimization of large-bore steel piston to achieve same reciprocating mass as current aluminum piston
- Cost neutral/weight neutral package that is intended to be used in new production, and for fleet upgrades of existing engines

Technology Impact

Through optimization of the piston and other components, the unburned in-cylinder **methane slip is reduced by 80%.** This results in a **20% reduction in CO2e** vs current engine

Progress

- · All new components meet design goals
- All prototype components procured
- Emissions testing to start soon

Texas A&M: Reducing Emission of Methane through Advanced Radical Kinetics and Adaptive Burning in Large Engines (REMARKABLE)

Summary: Deliver a model-based feed-forward combustion control system to predict and mitigate partial-fire and misfire cycles and a field-tested, prototype plasma ignition system that results in rapid selfsustaining combustion

Project Status:

- Texas A&M has collected data on test engine and provided data to Alabama for initial development of feedback controller
- Minnesota has begun testing plasma ignition in their combustion vessel for precombustion chambers
- Vieletech is continuing to develop engine control hardware
- Texas A&M will soon finish engine upgrades in preparation for plasma ignition system handoff from Minnesota for installation on test engine

Marquette: Prechamber Enabled Mixing Controlled Combustion (MCC) of Natural Gas

- Active prechamber igniter for Direct Injected Natural Gas
- Non-premixed, Mixing ______
 - Eliminates classic CH_4 slip sources Crevices & Blow-thru
 - Removed Knock Limitation → Increase Efficiency
 - Tolerant to a very wide range of gas qualities (Methane #)
- Applicable to 2-stroke and 4-stroke engines
- ~10x reduction in CH4 slip emissions at equal NOx emissions
- Transformational reduction in CH₄ emissions from NG engines & fuel agnostic tech. for future low carbon engines (Ammonia, Hydrogen, etc.)

Marquette: Prechamber Enabled Mixing Controlled Combustion (MCC) of Natural Gas

- Single-Cylinder Engine Laboratory Testing
 - Starting in November 2023
 - 4-stroke diesel engine converted to Natural Gas
- Interested in Field Testing Partners for Phase 2
 - Planning & Execution Begins in Spring 2024
 - Testing Approximately Spring 2025
 - Interest in platforms that have high methane slip, and ample room in the cylinder head
 - 2-Stroke engines could be great candidates
 - 4-Stroke engines are also very welcome

- 1. DreamDuo flare
- 2. Hybrid Flare
- 3. DRE-Max
- 4. Computer Vision
- 5. Methane DRE Measurement

ACT: SWISS-ROLL COMBUSTOR

- Center combustion zone surrounded by spiral heat exchanger
 - Effectively recuperate heat to ensure high reaction temperature
- High destruction efficiency throughout the wide flow range and compositions
- Completely enclosed combustion (no visible flame) with a wide flammability (ultra-lean to ultra-rich)
- 99.9%+ methane DRE; ultra-low NOx emissions
- Clean premixed combustion for a very low heating value flare gas (< 40 BTU/SCF) without supplementary fuel
- Compact size
- Applications
 - Methane mitigation from small and marginal wells
 - Pipeline blowdown operations
 - Incinerate hydrocarbon and chemical storage tank vent fumes

ACT Looking For...

- Partners for field testing
 - small or marginal wells
 - tank vapors
- Collaborators on complementary technologies
 - lean and ultra-lean combustion of low BTU/SCF gases
 - fuel reforming
- Pipeline O&M Companies
- Oilfield Service Providers

U Michigan SABRE Field Test Site(s)

Project will cover instrumentation and testing costs.

- Measure composition, flow for flare streams
- Test new hardware to improve flare performance

Margaret Wooldridge <u>mswool@umich.edu</u>

Project vision: Improved flare-tip burner design enabled by advances in modeling, optimization and additive manufacturing will reduce methane emissions using realistic flare conditions experienced in the field.

Minnesota: Enhancing Methane Flare Destruction Efficiency through Non-Thermal Plasma-Assisted *In-Situ* Reforming

- Low-temperature plasma discharges in flare vent gases enhance chemical reactivity, enabling improved burning characteristics resulting increased flare efficiency, reduced methane emissions
- Plasma enables ignition and flame stabilization

Biswas et al.

Johnson Matthey Catalytic Oxidation of Methane – COMET[™]

Safe, simple and reliable once through design

*Example of monolith catalyst

National Laboratory

ATMOSPHERE

CHANGING WHAT'S POSSIBLE

FUEL THE WORLD FOR A BETTER TOMORROW

*Example of potential scalability of a system

- Continuous flow
- Scalable Modular Design •
- <600°C oxidation
- No NOx •

- Low 0.1mol% methane •
- >99.5% conversion
- Low maintenance
- Option for power generation

Methane oxidation over wide range of inlet compositions @ low operating temperatures w/o external heat

About PCI: Privately-held small business (~50 employees; 14 Ph.D.'s); Solutions for: Power Gen, Syngas/H₂ production, Air-cleaning, Energy

$Concept \rightarrow Advanced Prototypes \rightarrow Fielded Systems$

Contact: Tony Anderson (Business Dev.); Hani A.E. Hawa (PM); Phone: 203-287-3700; Email: aanderson@precision-combustion.com; hhawa@precision-combustion.com; www.precision-combustion.com

PCI: Potential Partnerships

Mine Equipment/Facility System Integrator

- Pilot scale demonstrations under examination
- Transition of Pilot to Full-Scale also under examination
- Ruggedization to mine environment
- Application dependent economic analysis

Carbon Credits

- Regulation and quantification/verification standards
- Sale of credits

MIT: VAMCO

- Advantage over state-of-the-art:
 - Low-temperature, low-cost, low-level methane performance offers potentially significant advantages with respect to safety and cost
- Goal:
 - Towards an integrated system for destruction of subflammable methane via Earth-abundant, low-cost catalysts in high-flow reactors
 - <\$50/ton CO2e; >87% GHG savings
- Follow on:
 - Non-dilutive funding for commercial entity for methane abatement technologies
 - Field demonstration at 100k CFM

¹⁻⁶Numbers indicate existing collaborations, publication, and/or patent records.

Next Step

- Currently in TRL 5
- FTU demonstration by end 2024
- Catalyst design and optimization complete
- Site selection complete
- Fabrication of Field Test Unit (FTU) in progress
- Open to project developers who are interested in partner

Needed: Flare Emission Quantification

► We **urgently** need instrumentation to:

- measure emissions from existing flares (inventorying and financial incentives)
- assess new "low emission" flare technology
- Verifiable for emission reporting and credits

Many candidate tools for the job

- Airborne/drone sensing
- Passive or Active FTIR (single path)
- Imaging based: VISR Mantis (multispectral), Telops (hyperspectral)
- Differential Absorption LiDAR (DIAL)
 - Can any distinguish >98% efficiency?
 - Hard to say, especially for "black boxes"

We are designing a new research program to

- 1. Define the problem (what are we actually trying to measure?)
- 2. Categorize techniques (what should be used for what?)
- **3. Assess existing and emerging instrumentation** (<u>rigorously</u> and <u>transparently</u>)
- **4. Develop testing protocols** (defensible accuracy, CFD digital twins, verification and validation, Bayesian statistics)

Great foundational work, including:

- FlareNet (Canada, 2016-2022): how to we measure emissions from upstream flaring?
- ARPA-e REMEDY (USA, 2021-2024): develop new low-emission flaring technologies

- ► But more needs to happen...
 - Follow-on funding to support US-based research (e.g., DOE)
 - Industry technology demonstration/field test partners
 - International partnerships (World Bank, PTAC, etc.)

CHANGING WHAT'S POSSIBLE

Prof. Kyle Daun Department of Mechanical and Mechatronics Engineering University of Waterloo kjdaun@uwaterloo.ca Prof. Jennifer Spinti Department of Chemical Engineering University of Utah u0114312@utah.edu

Voluntary Programs

- Public-private partnerships for sharing best practices, expertise
 - Oil and Gas (#1)
 - Natural Gas Star
 - Methane Challenge
 - LMOP (Landfill, #3)
 - AGSTAR (manure, #4)
 - CMOP (Coal mines, #5)
- <u>https://www.epa.gov/gmi/sector-based-epa-methane-partnership-programs</u>

Secretariat for Global Methane Initiative

 Global public-private partnership for methane-to-energy projects, reduce emissions from oil and gas, biogas, and coal mines

DOE Fossil Energy Carbon Management

- Methane Mitigation Strategies
 - Monitoring/quantification
 - \$47MM/22 projects engines, tanks, basin-level/supply chain
 - <u>https://www.energy.gov/fecm/project-selections-foa-2616-innovative-methane-measurement-monitoring-and-mitigation</u>
 - Associated gas conversion to eliminate flaring
 - 10 projects, producing H₂, carbon, fuels, etc
 - METEC upgrades
 - Site for testing methane detection/quantification tools

National Academy: Atmospheric Methane Removal Workshop

- Atmospheric Methane Removal: Needs, Challenges, and Opportunities,
 - October 17-18, DC
 - In-person and virtual options
- Information gathered during the workshop will be used to inform the National Academies' <u>Committee on Atmospheric Methane Removal: Development of a Research</u> <u>Agenda</u>

