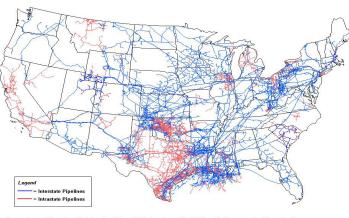
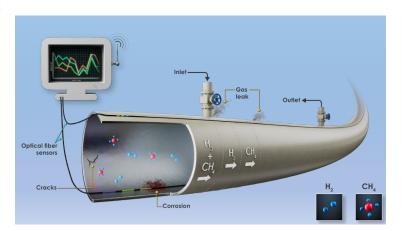

Advanced Sensors for Real-Time Monitoring of Natural Gas and Hydrogen Infrastructure


Ruishu F. Wright, Ph.D.

Technical Portfolio Lead Research and Innovation Center National Energy Technology Laboratory



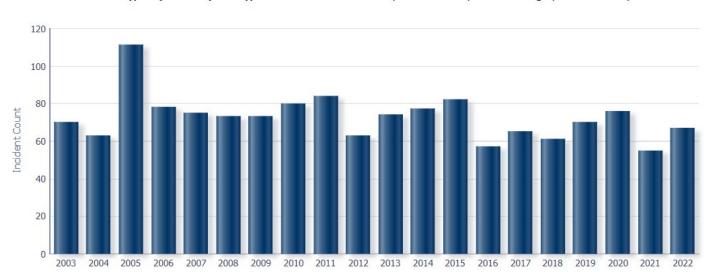
Repurpose of Natural Gas Infrastructure for Hydrogen Use

HyBlend Pipeline

PHMSA Data:

NG Transmission Pipeline: **298,353 miles** NG Distribution Pipeline: **2,296,214 miles** Hydrogen Transmission Pipelines: **1,567 miles** Hydrogen Distribution Main Pipelines: **1 mile**

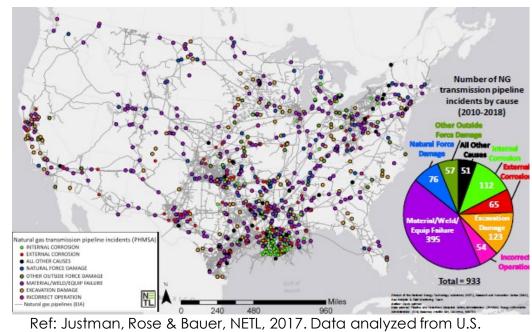
- NETL has established Natural Gas Infrastructure Program since 2016 to Quantify and Mitigate Midstream Methane Emission. NG decarbonization and Hydrogen Technology Program since 2022.
- Pipeline Sensors address pipeline reliability, public safety, operational efficiency, and flexibility.



HNOLOGY

Safety is always #1 priority!

NATIONAL ENERGY TECHNOLOGY LABORATORY


Significant Incidents of Gas transmission pipelines 2003-2022 (Source: PHMSA)

PHMSA Pipeline Incidents: Count (2003-2022) Incident Type: Significant System Type: GAS TRANSMISSION State: (All Column Values) Offshore Flag : (All Column Values)

20-year average: 73 incidents / year; cost \$143 M / year

Natural Gas Transmission Pipeline Incidents (2010-2018)

DOT PHMSA incident data

Real-time and predictive monitoring can reduce risks and improve safety.

Environmental Impact

CH₄ is > 25 times more potent than CO₂

- Natural gas systems emitted 181.4 MMT CO_2 Eq. (6,478 kt CH_4) of CH_4 in 2021. Methane emissions from the transmission and storage segment accounted for approximately 25 percent of emissions from natural gas systems. (EPA)
- Silver lining: CH_4 life time is ~ 12 years while CO_2 effect can last centuries, meaning CH_4 emission mitigation could have a quicker effect on slowing down global warming.

Current CH₄ in atmosphere: **1922 ppb**; H₂ in atmosphere: **530 ppb**

Hydrogen as an indirect greenhouse gas

H ₂ +	он → н	+ H ₂ O
CH₄ concentrations	Tropospheric O ₃ concentrations	Stratospheric H ₂ C
Less OH is available to react with CH_4 and OH is the main sink of atmospheric CH_4 , this increases the lifetime of CH_4	Tropospheric O ₃ formation via a chain of reactions: $H + O_2 \rightarrow HO_2$ $HO_2 + NO \rightarrow NO_2 + OH$ $NO_2 + hv \rightarrow NO + O$ $O + O_2 + M \rightarrow O_3 + M$	When this reaction occurs in the stratosphere, the additional water vapor causes stratospheric cooling that leads to a positive radiative forcing

tropospheric warming effects

stratospheric warming effects

Reference: Ilissa B. Ocko, Steven P. Hamburg, 'Climate consequences of hydrogen leakage', https://doi.org/10.5194/acp-2022-91

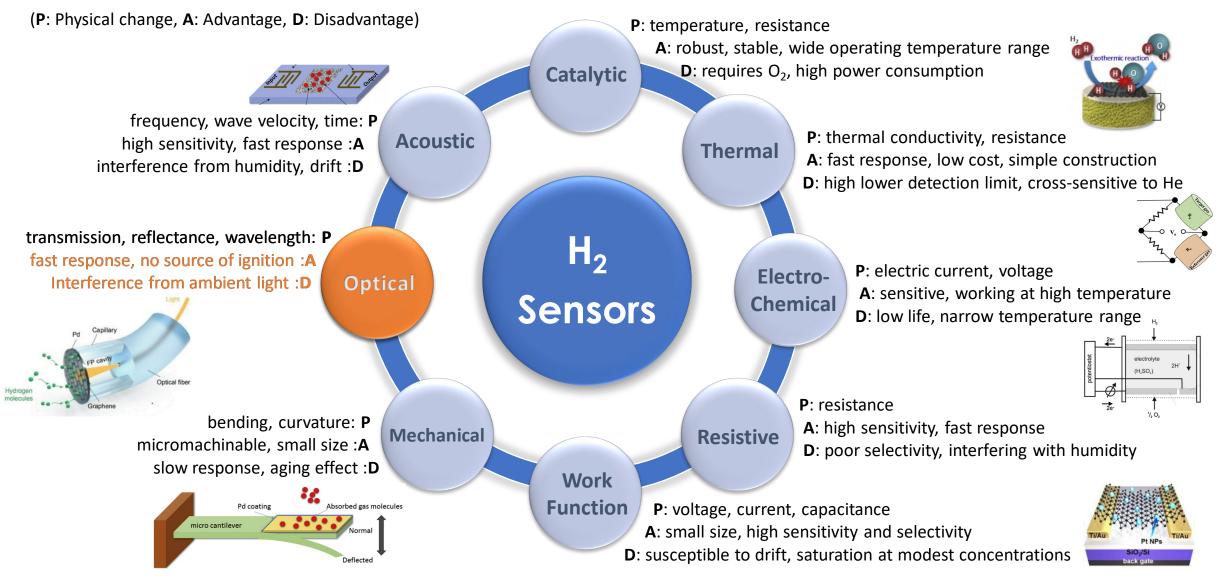
"Green H_2 can mitigate atmospheric methane if hydrogen losses throughout the value chain are below $9 \pm 3\%$. Blue H_2 can reduce methane emissions only if methane losses are below 1%."

Highly sensitive monitoring of CH₄ and H₂ at ppb level are important to evaluate global warming effects and GHG impact modeling.

Source: 1. Global Monitoring Laboratory. 2. Bertagni, et al 2022, Nature Communications

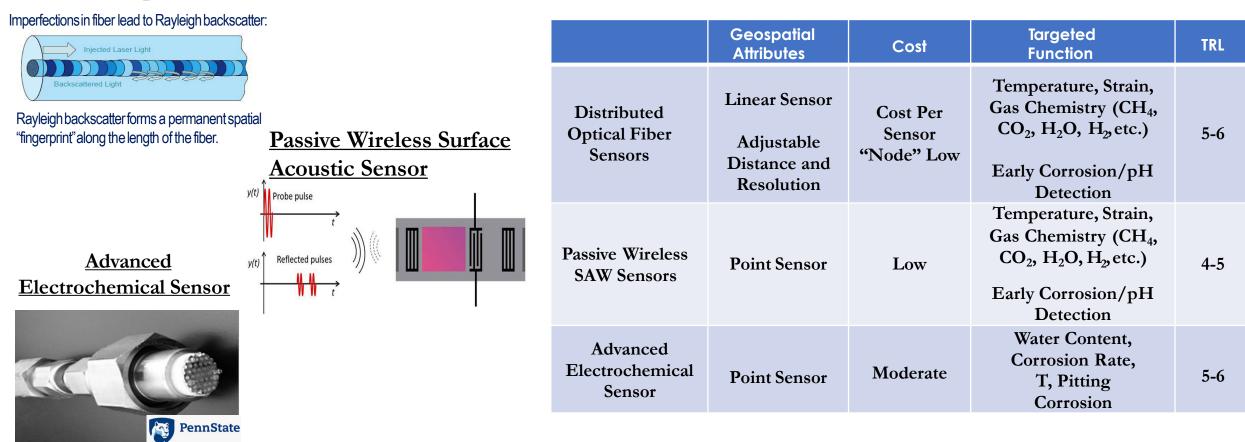
State of the Art of Methane Sensors

Methane Sensor Types	Working Mechanisms	Advantages	Disadvantages	
Catalytic pellistors	Burn the target gas and the generated heat produces a change in the semiconductor resistance, w	Robust performance Easy operation Straightforward to install, calibrate and use	Require O ₂ to operate. Heated. Poor selectivity	
Optical sensors	Detect changes in light waves that result from an interaction of the analyte with the receptor part.	Non-destructive method; Immune to electromagnetic interference; Operate without oxygen.	High cost; High power consumption; Lack of significance and distinctiveness of methane optical absorption region.	
Calorimetric sensors	Measure the heat produced from a reaction and correlate the value to the reactant concentration.	Low cost; Simplistic design; Portable; Easy to manufacture; Good selectivity for methane; Can operate in harsh environmental conditions.	Low detection accuracy; Susceptible to cracking, catalyst poisoning and oversaturation; High power consumption; Short lifespan; Require high temperature.	
Pyroelectric sensors	Convert thermal energy into electrical energy based on the phenomenon of pyroelectricity.	Non-destructive; Operate without oxygen; Good sensitivity and responsivity; Wide measuring range; Operate at room temperature.	High cost; High power consumption; Immobile; Difficult to manufacture.	
Semiconducting metal oxide sensors	Absorption of gas on the surface of a metal oxide changes its conductivity, which is then quantified to obtain the gas concentration.	Low cost; Lightweight and robust; Long lifespan; Resistant to poisoning.	Poor selectivity; Small and high operational temperature range; Slow recovery rate; Significant additive dependency; Affected by temperature; Susceptible to degradation; Sensitive to changes in humidity	
Electrochemical sensors	Measure the target gas concentration by oxidizing or reducing the gas at an electrode and measuring the resulting current.	AE-based: Low cost. IL-based: Non-hazardous materials; High boiling points and low volatility; Good selectivity for methane; Can detect small leaks. SE-based: No leakage; Safe; Robust; Good selectivity for methane; Can detect small leaks.	AE-based: Susceptible to leakage and evaporation; Hazardous materials; Slow response time. IL-based: Susceptible to leakage; Slow response time. SE-based: Require high temperature; Unable to detect low gas concentrations; Susceptible to degradation or loss of electrolyte.	



Ref: Aldhafeeri, et al *Inventions* 5, no. 3: 28; T. Hong et al. Trends in Analytical Chemistry 125 (2020) 115820

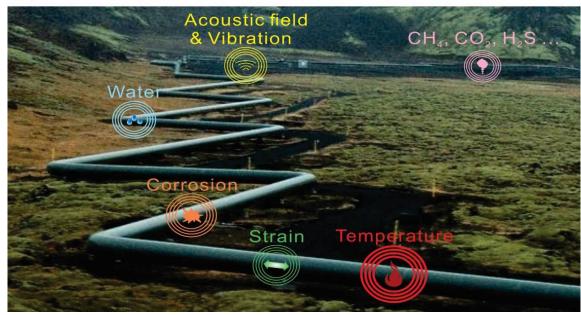
State of the Art of Hydrogen Sensors

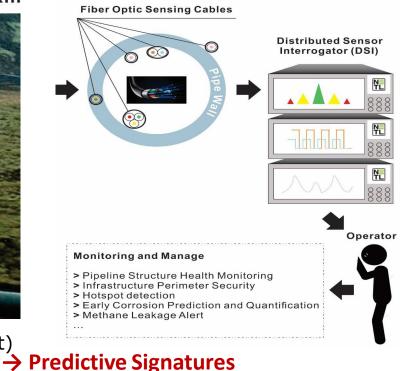

(Chemistry Select 2020, 5, 7277-7297)

NETL Advanced Sensor Technologies

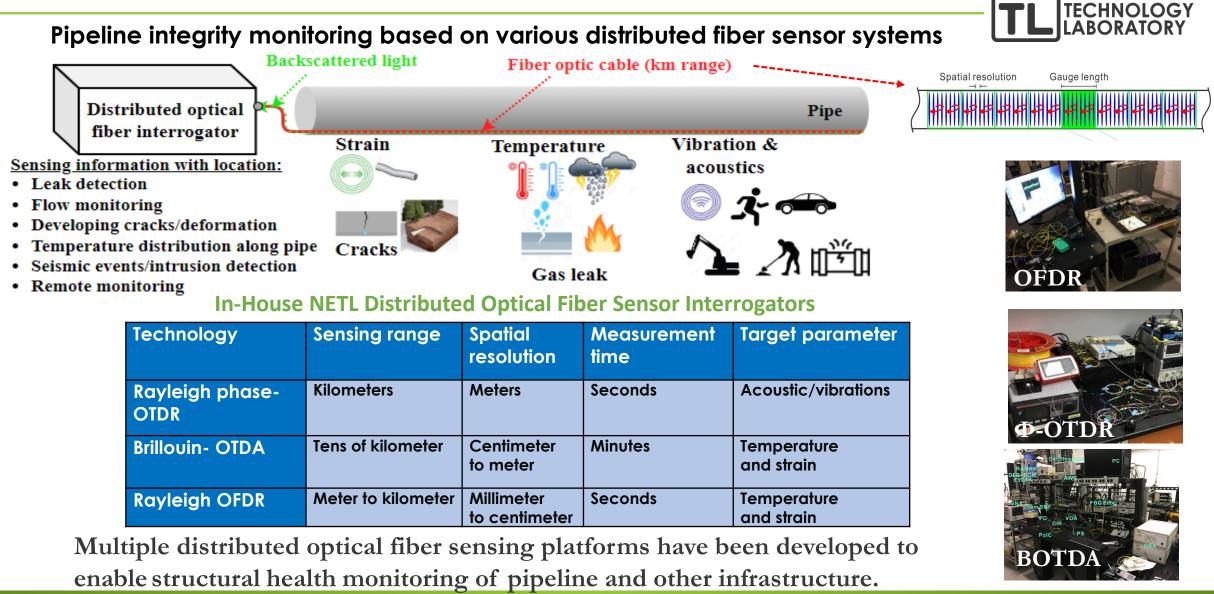
NATIONAL ENERGY TECHNOLOGY LABORATORY

Distributed Optical Fiber Sensor

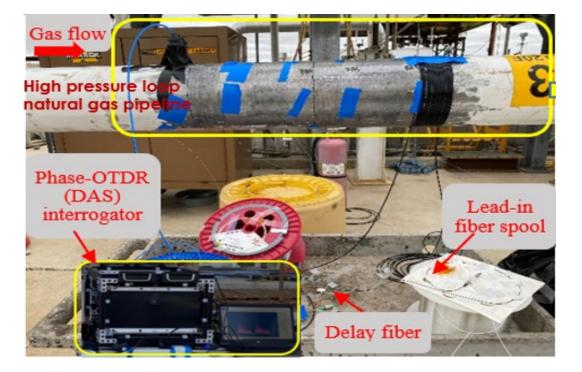

Three Synergistic Sensor Platforms with Complementary Cost, Performance, and Geospatial Characteristics are being Developed with an Emphasis on Corrosion & Gas Monitoring.

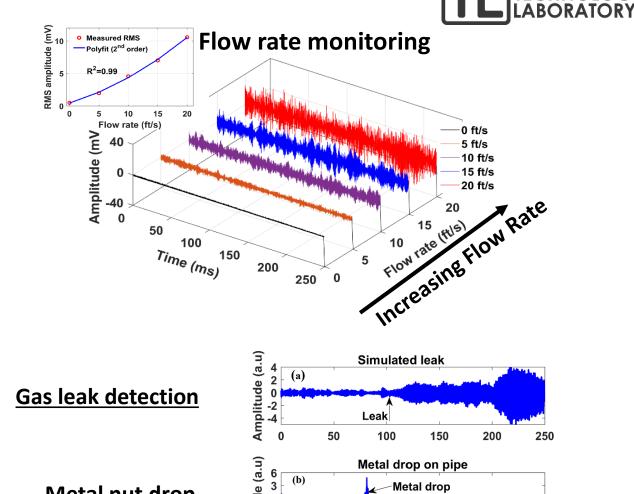

Distributed Optical Fiber Sensor Network for Pipelines

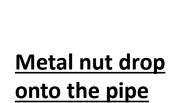
Pipeline Integrated with Distributed Optical Fiber >100 km

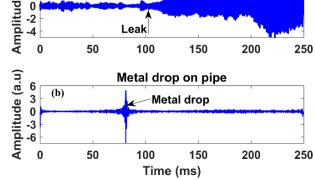

- > Optimize Interrogation System (Range, Resolution, Cost)
- Early Corrosion On-Set Detection

Multi-Parameter, Distributed Optical Fiber Sensor Platform to Enable Reliable and Resilient Pipelines. >100 km Interrogation, <1 to 5 m Spatial Resolution


Distributed Optical Fiber Interrogator Development




NATIONAL Energy


Distributed Acoustic Sensing Pilot-scale Field Demonstration N NATIONAL ERG

- Flow rate monitoring ٠
- Leak detection •
- Third party intrusion detection

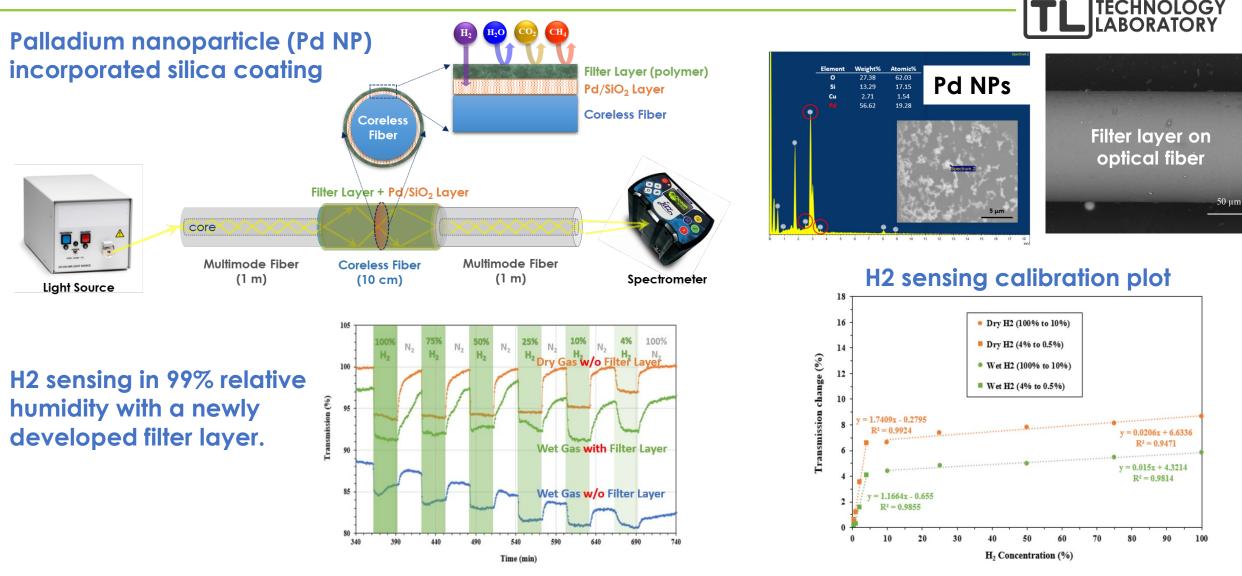
TECHNOLOGY

Optical Fiber Methane Sensing

5**0**0

40

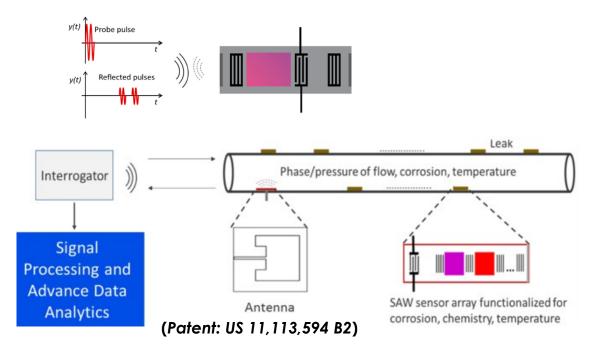
CH, Concentration [%]

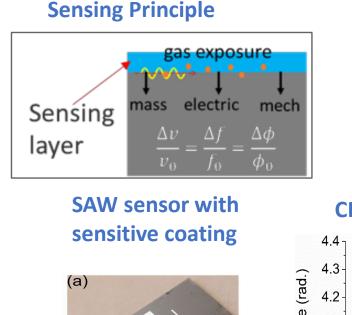

Functional Sensing Layer Integrated Evanescent Wave CH_4 Detection Limit: < 5% in N_2 Fiber Optic Absorption Based Sensors Baseline stabilized by sorbent inclusion Fiber sensor Light source Detecto $I_T(\lambda) = I_0 \exp[-\gamma \alpha(\lambda)CL]$ 100 - 4. 99 n SiO T% 98 n ZIF-8 n Co/ZIF-8 k ZIF-8 Reversible Extinction coefficients / k Real refractive index / n - k Co/ZIF-8 97 Physisorption = 220 nm **Fast kinetics** Porous Metal Organic Micro-porous Gas 96 $\lambda = 597 \text{ nm}$ Framework (MOF) Permeable Polymers 95 100 200 300 4**0**0 Time (min) 0.0 1.2 -200 400 600 800 1000 (d) Wavelength / nm 4 -Gas adsorption in the sensor coating causes $RI_{(coating)} > RI_{(fiber)}$, °″2 inducing optical power changes. Linear Calibration Kim et. al, ACS Sens. 2018, 3, 386-394

- Light Intensity Based Methane Sensing Technology.
- Integration of Fiber Optic Sensors with Engineered Porous Sensing Layers by Design.

100

Optical Fiber Hydrogen Sensor

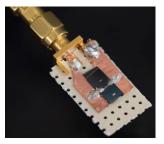


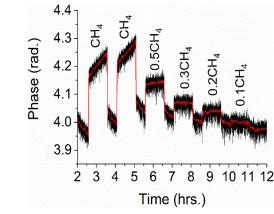

JATIONAL

- Pd nanoparticle (NP) incorporated SiO₂ coated optical fiber H₂ sensor was developed.
- H2 sensing calibration plots under humidity conditions for a wide range of 0.5% to 100%.

Passive Wireless Surface Acoustic Wave (SAW) Sensors

- Passive, Wireless, Matured Devices
- Sensitive, Cheap Point Sensors
- Possible for Multi-Parameter Operation (Temperature, Pressure, Strain, Chemical Species, Corrosion etc.)

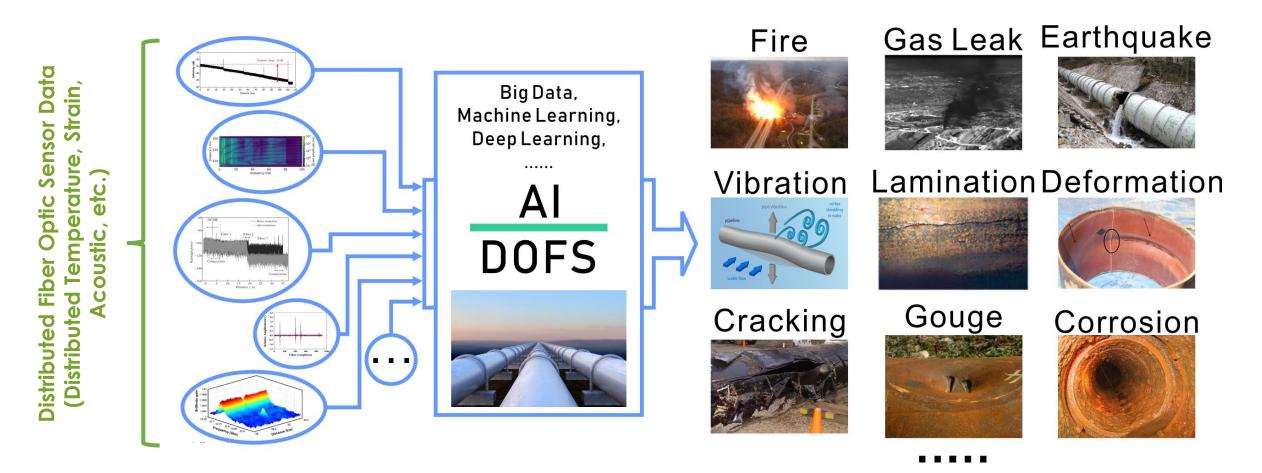



ZIF-8 (240-nm)

SAW sensor

CH₄ sensing results

(Devkota et al., IEEE Sensors Journal, 9740 – 9747 (2020)


Low-cost passive wireless methane sensors have been developed at NETL.

Artificial Intelligence-enhanced Distributed Sensor Network

Fiber Optic Based Distributed OFS Technology Integrated with Advanced Analytics Including Pattern and Feature Recognition Can Convert Large Data Sets to Actionable Information.

Sensor Materials for Critical Infrastructure and Extreme Environments

Advanced Sensors for Energy Efficiency, Safety, Resilience, and Sustainability

- Monitor systems and conditions \checkmark
- Improve performance & efficiency
- Enhance reliability & safety \checkmark
- Temp, acoustics, chemical, gas, corrosion
- Composite nano-materials, thin films & fiber optics, sensor devices development

Sensor Sensing Platforms **Materials** **Turbines:** Real-time fuel composition and combustion temperature for improved service life and efficiency

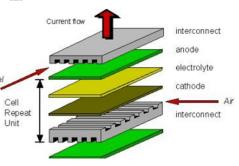
arpa·e

SOFCs: Fuel

gradients for

and efficiency

temperature Fuel


concentration &

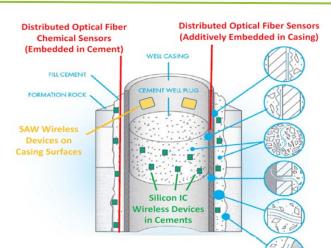
improved lifetime

ATION

GENER

Nuclear: Core monitoring and molten salt temperatures for reactor fuel efficiency & reactor safety

ENERGY DELIVERY & STORAGE


Pipelines: Monitor corrosion, gas leaks, T, acoustics to predict/prevent failures. NG, H₂, CO₂

Grid: Transformer, fault detection, state awareness

powerline failure prediction, **Subsurface:** Wellbore integrity, failure prediction, leak detection. Geologic storage of CO_2 , H_2/NG , or abandoned wells.

Summary

- For safety and global warming impact evaluation, it is critical to monitor lowconcentration CH_4 and H_2 leaks in real time to mitigate greenhouse gas emissions and ensure safe operations using the flammable gases.
- Multiple complementary sensor technologies developed at NETL can support gas leak monitoring, leveraging the advantages of *optical, electrochemical, and microwave / wireless sensor platforms*, to build an in-situ, multi-parameter, distributed, and costeffective sensor network.
- *A wide range of sensing materials* are developed to achieve high sensitivity, selectivity, and fast response, including MOF, polymers, and nanocomposites.
- Predictive and early detection of structural and equipment failures can inform timely maintenance and mitigate risks and gas emissions.
- Artificial intelligence-enhanced sensor network with ubiquitously embedded sensors will ultimately achieve desired visibility across the energy infrastructure.

Acknowledgement

DOE FECM Division of Methane Mitigation Technologies Director: Tim Reinhardt (HQ)

Program Managers: Christopher Freitas; Jared Ciferno; Evan Frye (HQ)

Technology Manager: Bill Fincham (NETL)

Technical Portfolio Lead: Ruishu Wright (NETL)

Research Team: Ruishu Wright (PI), Nageswara Lalam, Michael Buric, Paul Ohodnicki (UPitt), Jagannath Devkota, Ömer Doğan, Derek Hall (PennState), Jeffrey Culp, Krista Bullard, Nathan Diemler, Daejin Kim, Matthew Brister, Ki-Joong Kim, Kevin Chen (Pitt), Richard Pingree, Daejin Kim, Alexander Shumski, Scott Crawford, Jeffrey Wuenschell

Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONTACT INFO

Ruishu.Wright@netl.doe.gov

NETL RESOURCES

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory

Backup slide

Performance Metrics of Commercially Available H₂ Sensors

Sensor type	Principle/Device	Accuracy /% of indication	Response time (†90)/s	Power consumption/ mW	Gas environment	Lifetime /years	High detection limit/vol%	Low detectio n limit	*Ref.
Catalytic	Pellistor	< <u>+</u> 5	<30	1000	-20~70 °C, 5-95% RH, 70~130kPa	5	4	2000 ppm*	Henriquez 2021
Thermal Conductivity	Calorimetric	±0.2	<10	<500	0-50 °C, 0~95% RH, 80-120 kPa	5	100	200 ppm*	Park, 2014
Electrochemical	Amperometric	≤ <u>+</u> 4	<90	2-700	-20~55 °C, 5~95 RH, 80-110 kPa	2	4	10 ppm*	Korotcenk ov, 2009
Resistance based	Semiconducting metal-oxide	<u>+</u> 10-30	<20	<800	-20~70 °C, 10~95% RH, 80-120 kPa	>2	2	10 ppb*	Yadav 2020
	Metallic resistor	≤ <u>+</u> 5	<15	>25	0~45 °C, 0~95% RH, up to 700 kPa	<10	100	500 ppm*	Kondalkar 2021
Work function based	Capacitor	≤ <u>+</u> 7	<60	4000	-20~40 °C, 0~95% RH, 80~120 kPa	10	5	1000 ppm*	Sahoo 2021
	MOS field effect transistor	≤ <u>+</u> 7	<2	700	-40~110 °C, 5-95% RH, 70~130 kPa	10	4.4	100 ppm*	Sahoo 2021
Optical	Optrode	± 0.1	<60	1000	-15~50 °C, 0~95% RH, 75~175 kPa	>2	100	500 ppm*	Liu 2019
Acoustic	Surface acoustic wave	n/a	n/a	n/a	Room temp., 55% RH*	n/a	2*	100 ppm*	Wang 2012

Source: Hubert et al. Hydrogen Sensors – A Review, Sensors and Actuators B 157 (2011) 329-352 (Note: *found in peer review research paper (Ref.))