

Hydrogen Emissions and Detection Efforts

Chris Moore, PhD *Program Manager* CH4 Connections | October 5, 2023

Why Focus on Hydrogen Emissions?

CLIMATE IMPACTS

- H₂ emissions can indirectly affect global warming
 - \circ More O₃, Strat. H₂O
 - \circ Longer CH₄ life
- GWP_{100} of 11.6 ± 2.8
 - \circ ~12 times that of CO₂
 - \circ GWP100 of CH₄ is 28
- Differing perspectives on the net impacts of H₂ emissions
 - \circ H₂ emission rates
 - Upstream CH₄ leakage

EMISSIONS DATA

- Very little data exists on H₂ leakage and/or venting rates
 - Estimates, simulations
 & assumptions put it at
 0.2-20%
 - \circ No empirical data
- Lack of clarity of emissions along the future H₂ value chain

TECHNOLOGIES

- H₂ detection technologies are in their infancy
- Existing tech is focused on safety
- H₂ is hard to detect through conventional spectroscopy
- Low-level detection and quantification critical to developing emissions estimates

Parallel issues have surrounded methane and the use of natural gas for the last 10+ years

Climate Impacts of Hydrogen Emissions

Key ResearchWhat aQuestionaccourt

What are the net climate impacts of a hydrogen economy when accounting for methane and hydrogen leakage?

Updates **Objectives** Tasks **1.** Define H_2 and CH_4 emissions • Evaluate warming impacts of Reviewed the literature on rate cases fugitive H₂ emissions in hydrogen emissions and climate **2.** Develop H_2 and CH_4 decarbonized energy systems impacts Research throughput cases relative to $CO_2 \& CH_4$ • Obtained data for tasks 1 & 2 Impact analysis for relative 3. **Overview** • Study decarbonization scenarios H_2 , CH_4 , and CO_2 emissions Using ecoinvent database and to illuminate conditions under across cases OpenLCA software to conduct which H₂ exacerbates or Project management and LCAs of hydrogen pathways with 4. mitigates warming and without H_2 and CH_4 leakage reporting • Hydrogen is crucial to the energy transition, but fugitive emissions indirectly cause global warming Key Why This Will be summarized in a Need to better understand leakage and Findings report in Q1 2024 **Matters** its impacts to evaluate the overall impact of transitioning

What do we not know?

- Uncertainties around natural H₂ fluxes, such as amount of H₂ sinking naturally in the soil
- Amount of H₂ leaking or venting from the value chain today or in the future
- How to go about detecting and measuring H₂ emissions
 - Ongoing discussions with instrument developers
 - Several groups are testing measurement technology options for H₂
 - How could hydrogen blending be implemented through existing infrastructure

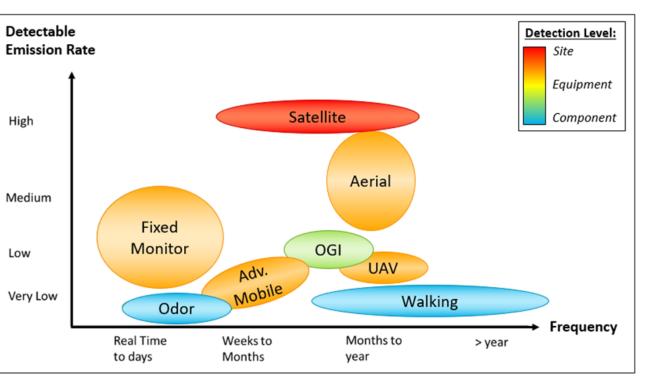
Critical need to qualify and quantify these unknowns

solutions that transform

- Leak detection
- Operating pressure
- Compression, flow, and capacity
- Metering
- Gas quality
- Welding, joining, hot tapping, stopping, squeeze-off, and purging
- Education and training of workforce, contractors, and first responders

DOT PHMSA Project on Detection

- Title: "Advancing Hydrogen Leak Detection and Quantification Technologies Compatible with Hydrogen Blends"
- Objective: Advance leak detection as hydrogen is introduced into natural gas infrastructure which will be realized through five different areas of effort
 - 1. Evaluate leak detection equipment currently used by natural gas pipeline operators
 - 2. Provide guidance on new/altered usage protocols
 - 3. Map out any threshold of hydrogen blending above which these devices become ineffective
 - 4. Map out the impact of varying amounts of hydrogen on the calibration and analytics of currently used leak detection equipment
 - 5. Develop a proof-of-concept hydrogen detection scheme to fill any gaps identified by the project team


DOT PHMSA Agreement 693JK32210004POTA 6

Existing Leak Detection Methodologies and Equipment

solutions that transform

Sensor Type	Range	H ₂ Effect on Calibration	H ₂ Damage to Sensor	Gas	Primary Mode of Use
Thermal Conductivity	%Gas	1	No effect	H ₂ CH ₄	Walking
Catalytic	LEL ppm	1, 3	Damage possible at high levels	H ₂ CH ₄	Walking, Fixed
MOS	ppm	1, 3	Damage possible at high levels	H ₂ CH ₄	Walking
Flame Ionization (FID)	ppm	1	No effect	H ₂ CH ₄	Walking, Mobile
Electrochemical	ppm	2, 3	Damage possible at high levels	CO O ₂ H ₂ S	Confined space
Mass Flow	LPM	1	Not evaluated	CH ₄	Odor Concentration
Laser Infrared	ppm.m	0	No effect	CH4	Walking, fixed, mobile
NDIR	LEL %Gas	0	No effect	CH ₄	Walking, fixed
Etalon	ppm %Gas	0	No effect	CH4	Walking, mobile

Table Notes:

0: Calibration specific to methane, not affected by other gas types. Will underreport flammable gas levels with hydrogen blends.

 Calibration accuracy specific to gas ratio of calibration gas. If calibration gas is methane, then blended gas will read higher/lower, error increasing with percent of blend
 Large cross sensitivity possible. Will produce false positive or false negative reading
 Significant effects if exposed to high concentrations, may cause permanent damage

DOT PHMSA Agreement 693JK32210004POTA 7

Leak Detection Impacts – Existing Methods & Equipment

solutions that transform

Odorization

- Studies suggest some odorants can continue to be effective when H₂ is present
- -Need to validate if a person can continue to readily smell a gas blend at one-fifth LEL

• Electrochemical sensors (CO, O₂, H₂S)

-Cross-sensitivity can lead to false positives or negatives

- Thermal conductivity, catalytic, MOS, flame ionization, and mass flow sensors
 - If calibration gas is methane, then blended gas will read higher, increasing blend%

Infrared and etalon sensors

– Calibration specific to methane and not affected by other gas types; will underreport flammable gas levels with H_2 blends

Equipment Technical Specifications and Requirements for Hydrogen Blends

Parameter	Notes		
Accurate/Repeatable	Is the technology accurate in general or for methane, hydrogen, or blends? What change in accuracy will hydrogen induce?		
Cross Sensitivity/Selectivity	Can distinguish between chemical species? What change in sensitivity will hydrogen induce?		
Detection Range	What change in detection range will hydrogen induce		
Minimum Detection Limit (MDL)	Does the introduction of hydrogen impact the minimum level of gas that the technology measures		
Response/Recovery Time (T90/T10)	Will hydrogen reduce the response rate of the sensor?		
Robustness/Reliability	Is the sensor robust to be used for leak detection in the field?		
Hazardous Location Certification	Can the technology be potentially made "intrinsically safe"		
Power Consumption	How much power does the technology need? Could this be prohibitive for lead detection?		

Newly Formed Collaborative Program - HyRes HyRes

HyRes is a GTI Energy-led research collaboration that will address important research questions on hydrogen emissions by:

RESEARCH & EDUCATION

- Clarify, harmonize, and educate on the foundational science of hydrogen's atmospheric climate impacts
- Develop R&D roadmap on hydrogen emissions and its atmospheric/climate impacts

EMISSIONS QUANTIFICATION

- Develop hydrogen emission inventories
- Create a rigorous set of measurement and reconciliation tools
- Perform real-world hydrogen emissions measurements

HyRes Program

- HyRes will leverage GTI Energy's time-tested expertise in emissions research reduction, reduction, and impact abatement.
- The Consortium is collaborative, building on the knowledge and capabilities of the entire hydrogen & energy community
- Potential sponsors and interested parties
 - Natural Gas Local Distribution Companies (Hydrogen blend projects)
 - Hydrogen Production Industry (e.g., Air Liquide, H2 Hubs collaborators)
 - Hydrogen Producers (e.g., integrated majors)
 - Hydrogen Transporters
 - Hydrogen End Users
 - Transportation Markets

HyRes Timeline

Technical Development

- CMR Workshop on Hydrogen
- CH4
 Connections
- Summary paper on key research questions
- Program Launch

- H₂ Industry Map Development
- Information Library Assembly
- Hard Launch

- Release Industry Map
- Release H₂ Library
- Begin H₂ Emissions R&D Roadmap

Integrate with
 Hydrogen Hubs

Thank you

CHRIS MOORE CMOORE@GTI.ENERGY