

Affordable Zero Net Energy Homes

Final Training Webinar Part 2: Project Outcomes & Lessons Learned

Prime Funding: California Energy Commission's Electric Program Investment Charge Program

Co-funding:

Southern California Gas Company's RD&D and Energy Efficiency Programs

March 24, 2022

Zero Energy/Electricity/Emissions Homes

With major contributions from **Mike MacFarland, Energy Docs** Home Performance Contractor

POLL Which best describes YOU?

- **A.** General contractor
- **B.** Trade contractor (select B + specify in chat box)
- **C.** Architect or engineer
- **D. Other** (select D + explain in chat box!)

Resuming Our Story ...

Part 1: Project Description

- ZNE background—context and value
- History of ZNE homes
- Defining ZNE
- Our starting point: the prior project ★

Current project & what we hoped to learn ★

Tuesday's cliffhanger

Zero Energy/Electricity/Emissions Homes

Part 2: Project Outcomes & Lessons Learned

Energy performance

- What's different about ZNE homes
- Process takeaways
- High-level lessons learned
- Resources

How did the two homes perform? (and compare?) We monitored to find out.

Performance Category	Monitored Items	Monitoring Instruments	
Electrical consumption	HVAC, DHW, appliances, plug load circuits, lighting circuits	SiteSage with current transducers	
Gas consumption	HVAC, DHW, appliances	SiteSage	
DHW	Temperatures, flows	Onicon BTU meters, temperature sensors	
HVAC	Temperatures	Onicon BTU meters	
Indoor conditions and operation	Temperature and RH in various rooms, setpoints, modes	Ecobee	
Weather	Dry bulb, solar radiation	Onsite weather station	
Heat flux	Heat flow through exterior walls	Heat flux sensors	
Solar generation	Electrical generation	SiteSage with current transducers	

Mixed-fuel home: consumption

All-electric home: consumption

Mixed-fuel home: consumption by end use

All-electric home: consumption by end use

Consumption to date by end use with solar generation •

2022 - 2023 8000 Yearly Site Energy (kWhe) 6000 4000 <u>ZN</u> 2000 0 AĖH MĖH

Plugs and Lights Electric Water Heating ZZ Gas Appliances ZZ Gas HVAC OSolar Electric Appliances Electric HVAC ZZ Gas Water Heating

Consumption to date by end use and fuel

Estimated 1-year performance

Mixed-fuel home

All-electric home

Energy use intensity (EUI) – 1,200-sf homes

NOTE: In Climate Zone 12, a good target EUI for ZNE is 16.6*

Comfort

Surveys: occupant behaviors

BOTH households:

3 regular occupants

1 home with young child,
 1 working at home

MIXED-FUEL

ALL-ELECTRIC

Laundry	10 loads/week, warmer water	6 loads/week, cooler water	
Showers	same overall length, but fewer/longer	same overall length, but more/shorter	
Garage fridge/freezer	No	Yes	
Passive cooling	Used windows	Did not use windows	
Supplemental heat	Space heater used in master bedroom, day and night	None	

Surveys: occupant goals & comfort

BOTH households:

3 regular occupants

1 home with young child,1 working at home

MIXED-FUEL

ALL-ELECTRIC

Winter setpoint	Monitoring: 73-75	Monitoring: 70-72	
Summer setpoint	Survey: 74 Monitoring: 73	Survey: 71 Monitoring: 68-70	
Goal for use of thermostat setpoints	"Entirely to be comfortable"	"A compromise between comfort and controlling energy bills"	
Goal for use of heating & cooling equipment	"We use the heater and AC as much as we need it to be comfortable"	"We try to be frugal, but we want to b comfortable, too"	
Comfort comments	Really liked the system Reported discomfort, but not rising to the level of a problem	Really liked the system	

Conclusions: what do the data tell us? Were ZNE goals met?

- All-electric home is projected to meet ZNE goal:
 - Good EUI: 15.8 kBtu/sf-yr
 - Plenty of solar production: 17.9 kBtu/sf-yr
 - Net negative consumption (net generation): 2 kBtu/sf-yr
- Mixed-fuel home is not projected to meet ZNE goal:
 - Poor EUI: 28.5 kBtu/sq ft
 - Same amount of solar production: 18.1 kBtu/sf-yr
 - Net positive consumption of about: 10 kBtu/sf-yr
 - Not including garage: add an additional 17 kBtu/sf-yr (home)

Zero Energy/Electricity/Emissions Homes

Part 2: Project Outcomes & Lessons Learned

Energy performance

What's different about ZNE homes

- Process takeaways
- High-level lessons learned
- Resources

What's different about ZNE homes?

Key characteristics	Which means you need to make it easy to:
More energy-efficient than most	 Air seal & insulate effectively (and meet QII) Have nature help (not hinder) performance
Enough solar PV to meet annual loads	 Find enough contiguous roof space for a rational solar array
High-performanceHVAC systemMixed-fuelAll-electric	 Pre-design entire system, including distribution system layout Understand the different space requirements based on fuel choice Accommodate all parts in conditioned space
High-performance DHW system	 Pre-design entire system, including piping sizes and routing

The devil's in the details

Image: Openclipart via publicdomainvectors.org

Critical factors for achieving ZNE affordably:

- Roof
- Basic building form
- Floor plan & system design
- Windows and shading
- Documentation
- Commissioning

Roof—why start here?

Achieving ZNE dictates a solar production goal

- Just code (zero net electricity)? or
- Zero net energy? or
- Zero net emissions?

Metrics that matter

- Energy use intensity (EUI)
- Total load (KW DC energy)
- PV square footage
- Roof area

Image Xana_UKR via iStock

Choose a target energy use intensity (EUI)

What's a "good" EUI in KBtu/sf/yr?

Source: The Technical Feasibility of Zero Net Energy Buildings in California, Arup, December 2012

Use EUI to estimate annual energy load

What's the total load in kilowatt-hours (kWh)? EUI (kBtu/sf/yr) x House Size (sf) EXAMPLE: 1,800 sf house in Oakland (Zone 3) 12.7 kBtu/sf/yr x 1,800 sf = 22,860 kBtu/yr Convert kBtu/yr to kWh/yr: divide by 3.412 22,860 / 3.412 = 6,700 kWh/yr

Set preliminary solar energy production goal

How much PV is needed? In CA, on average, 1 kW of Dc peak capacity produces 4.5 kWh per day of 1,642 kWh per year, so 43 $6_{3}700/1,642 = 4.13$ KW DC Panels in CA on average produce 23.99 kWh/sf/yr, so 1KW occupies 68.42 sf 4.1 KW x 68.42 sf/KW = 280.5 sf or 12 solar panels

Source: https://www.solarreviews.com/blog/how-much-electricity-does-a-solar-panel-produce

Estimate uninterrupted roof area

How much roof space is that, really?

Typical residential panels are about 65" x 39" so an array 2 panels high by 6 panels wide is **about 11 ft. high x 20 ft. wide** plus 3' on 3 sides for fire clearance gives a **total roof area** of

PANELS

ROOF

14 x 26 ft = 364 sq.ft.

Source: http://news.energysage.com/average-solar-panel-size-weight/

Basic building form: simplifying **\$**AVE**\$**

MUCH EASIER to heat, cool, insulate, & air seal SIMPLE forms

REALLY HARD to heat, insulate, & air seal COMPLEX forms!

Basic building form: the value of simplifying

What are the costs of complexity here?

- Design \$\$\$
- Construction \$\$\$
- Liability risks
- Lost solar opportunity
- Higher utility costs
- Potential moisture intrusion

Example calculation: the cost of complexity

2,500 square foot floor plans

Construction cost assumptions (labor + materials):

\$ i

- \$300 / foot of perimeter
- \$500 / corner

Not included:

- Interior impacts
- Roofing impacts
- Design costs
- Occupant utilities

	A ZOO' TERIMETER	B) 220' PERIMETER	C TERIMETER 250'
Compare:	Plan A	Plan B	Plan C
Perimeter	200 ft	220 ft	250 ft
Corners	4	8	18
\$ increase		\$9.000	\$15.000

Floor plan & system design: hot water distribution

Floor plan & system design: mechanical layout

 Compact HVAC
 Accommodate all parts of system in conditioned space

> SHORT, STRAIGHT DUCT RUNS

Windows and shading: fundamentals

- Hold glass area in check (minimize heat loss and heat gain)
- Specify high-performance U-factor & SHGC (solar heat gain coefficient)
 - U ≤ 0.27, SHGC ≤ 0.24
- Include shading & glare protection
- Avoid double/single-hung and sliders
- Size windows to fit within framing

THEY'RE LEAKY! If SHGC is too high or shading is inadequate, ZNE homes can easily overheat

Windows and shading: shading principles

Shading principles

- Overhangs have limited effect at low sun angles
 - West & east façades
 - Spring & fall hot spells
- The lower the glass, the harder it is to shade
 - Occupants' knees can't enjoy the view
 - The solar heat gain is a liability

Documentation: drawings

All the usual plus:

- Wall framing elevations
 - Exterior
 - Interior
- Complete mechanical plans
 - Heating & cooling
 - Ventilation
- Complete plumbing plans
 - Schematic
 - Manifold installation

Documentation: framing elevations

Advanced framing:

- Studs 24" o.c.
- Openings aligned with framing
- Windows ordered to fit spaces between studs

FRAMING

DRAWINGS SHOW EVERY WALL & EVERY MEMBER
Documentation: air leakage control

Critical tasks:

- Provide an air sealing cross section
- Include details for air sealing & exterior insulation
- Provide specs for air sealing, insulation installation,
 & other critical construction quality tasks
- Communicate intent to entire crew
- Manage quality during construction

RESOURCE (free download) Air sealing drawing by Coldham & Hartman Architects →

Documentation: goals & checklists

	ITEM:	VERIFY IN FIELD:
\checkmark	Air barriers	In place
\checkmark	Air sealing	Comprehensive
\checkmark	Advanced framing	nes specs
\checkmark	Window NFRC sticker	Match specs
\checkmark	Cavity insula	Properly installed
\checkmark	HVAC load calcula ons	Checked
\checkmark	Duct design	Checked
\checkmark	Lighting	All LED/high-efficacy

Ensure contract documents:

- Clearly communicate your goals
- Specify procedures, timelines, metrics
- Include:
 - Performance testing of key building features and equipment during construction
 - Commissioning to verify as-designed performance of all key systems at completion

RESOURCE:

<u>PG&E Zero Net Energy Builder Resource Guide</u> (free download including many resources with live links)

Commissioning: a critical difference

Commissioning: what is it?

Performing tests and making adjustments needed for the system to meet all design objectives, functions, and specifications.

Building commissioning GOALS:

 To produce a building that meets the unique needs of its owner and occupants

 Ensure all systems are serviced and maintained properly

Enable all systems to operate as efficiently as possible

The term **commissioning** comes from shipbuilding.

A commissioned ship is one deemed **ready for service**.

Before being awarded this title, however, a ship—or a home's systems—must pass several milestones.

Commissioning: benefits

- 1. Higher worker productivity (use checklists!)
- 2. Systems last longer
- 3. Project goals and projections are realized
- Installing technician data feedback- learn what works and what doesn't
- 5. System designer feedback—save money, increase installation efficiency/ correct modeling assumptions
- 6. Smart operators/owners are happier, more comfortable, higher quality of living

HVAC System C	ommissioning: Lask Description
Project Name:	
Date:	
Outside Air Temp (F):	Inside Temp Average (F):
Note: This phase assumes the syste	em is fully wired, welded, evacuated, confirmed lea
free, charge	e released, and ready to run.
Verify proper air flow speed is s	et on control board per manufacturer instructions
Verify that all supply outlets an	d return air grilles are installed
Temporarily tape air handler un	hit door seal to be air tight
Perform duct leakage testing to	ensure air distribution system has "LO" leakage
Un-tape the supply and return	outlets. Convert DuctBlaster to FlowBlaster.
Verify all takeoff dampers at ple	enums are set in the full open position
Install a clean return air filter in	each return location
Turn on the unit and adjust tem	np setting to ensure it remains on
Adjust all supply outlets for pro	per throw into the unoccupied zone
Measure all supply* airflows, re	cording each on the Manual J/D (*or return)
Compare the total measured ai	rflow to the target airflow
If above is good, continue. If no	ot, modify system airflow, then re-measure
Verify that measured system air	rflow matches target system airflow
Compare individual room airflo	ws to room design target airflows
Identify room airflows that are	>20% from room target airflow
Starting with largest airflow am	ount over target, adjust down to target
Re-measure all airflows after ad	djusting any individual ones. Enter on design.
Lock each supply damper at the	plenum as they are adjusted. End with all locked.
Record each FINAL supply airflo	w on manual J design, erasing all previous ones.
Calculate the total of all supply	airflows, and record final number on design
Measure the airflow at each ret	turn air location and record on design
Measure and record total exter	nal static pressure on design
Individually close each room do	or, test and record pressure across each
Finally, measure the "fan only"	supply outlet airflows and record on design
When finished, turn off air hand	dler
Turn on exhaust system (fans),	measure and record airflows
Examine exhaust fan settings ar	nd set to meet BAS (if 80+ CFM recorded above).
Break down airflow measuring	tools and put away
Install outdoor disconnect, and/o	or turn on breaker to establish unit power
Turn system on in cooling mode	e (as weather appropriate).
Ensure proper temperatures for	r subcooling verification test
(Proper temps are house at mai	intained above 70F, and outdoor above 55F.)
Ask installation crew the measu	red line set length and if any charge was weighed
Purge gauges of any air and set	up refrigerant scale
Install refrigeration gauges and	insulated temperature sensors on outdoor unit
Weigh in proper charge for line	set length per manuf. instructions
Let system run for 15 minutes r	ninimum and record pressure and temp numbers
Ensure system is operating at p	roper speed for charging (typically LOW 2-speed)
After 15 minutes, compare read	dings to manufacturer targets

Commissioning: what systems need it?

- Heating units
- Cooling units
- Ducted distribution systems
- Ventilation systems
- Water heaters
- Hot water distribution
- Air barriers
- Thermal barriers
- Solar PV systems
- Etc.

Recessed can light air leakage

Air leakage inside wall between top plate & drywall

Air leakage through gaps at bottom of wall

Air leakage behind window head casing (not caulked)

What systems normally get commissioned?

Heating units

Cooling units

Ducted distribution systems

Ventilation systems

Water heaters

Hot water distribution

Air barriers

Thermal barriers

Solar PV systems

HVAC PERFORMANCE OUTCOMES	TYPICAL NEW HOME	HIGH-PERFORMANCE ZNE HOME
Equipment Sizing (Btuh)	80,000	9,000
Equipment Efficiency (AFUE & COP)	97 •5%	414%
Fan Power (Watts)	319 ²	75
Hourly Operating Cost (\$) ¹	1.13	0.13
External Static Pressure (inches WC)	0.92	0.20
Interior Stratification °F	30	3
Distribution System Losses	18,000	03
1. Gas at \$1.35/therm, electricity @ \$0.156/kWh	2. Heating mode only 3. When fully inside c	 cooling much higher onditioned space

HVAC Loads Habitat for Humanity, Stockton

Loads are tiny because the enclosure is excellent.

ZNE homes are superbly insulated and extremely airtight, with excellent windows, so they lose and gain much less heat than conventional homes.

HVAC LOADS - 1,200 FT² ZNE HOME

	Heating (Btu/h)	Cooling (Btu/h)
Living	2,562	2,876
Master BR	1,301	1,002
Kitchen	1,267	2,254
Hall/Storage	1,118	1,306
Bedroom 1	870	1,016
Bedroom 2	663	958
Master Bath	559	316
Bath 1	103	90
Other Equipment	366	291
Humidity		603
Total	8,809	11,006

Real-World Zero Net Energy Homes for California, 2020a

POLL

What is the ideal order for considering the following during design?

A. 1: Floor plan 2: Roof design 3: Systems design

- **B.** 1: Roof design 2: Floor plan 3: Systems design
- C. 1: Systems design 2: Floor plan 3: Roof design
- **D.** None of the above

POLL

What is the ideal order for considering the following during design?

A. 1: Floor plan 2: Roof design 3: Systems design

B. 1: Roof design 2: Floor plan 3: Systems design

C. 1: Systems design 2: Floor plan 3: Roof design

D. None of the above

What is the largest home that can be kept very comfortable yearround (70°F heating & cooling) with just a 3/4-ton heat pump? (Outdoor design temps: heating 30°F, cooling 102°F)

A. 800 SF (2 bed, 1 bath, 8' ceilings)

- **B.** 1,200 SF (3 bed, 1 bath, 8' ceilings)
- **C.** 1,600 SF (3 bed, 2 bath, 8' ceilings)
- **D.** 2,000 SF (4 bed, 2 bath, 9' ceilings)
- **E.** 2,400 SF (4 bed, 3 bath, 9' ceilings)

E. All a high performance new ZNE home needs is a 3/4-ton mini-split!

Stockton	Redding
HDD 2,702	HDD 8,800
CDD 1,470	CDD 8,800
1,200 sf	2,400 sf

Equipment, electrical & refrigerant line sets:

3/4 TON HEAT PUMP AIR HANDLER 6 6

1284

Credit: Rick Chitwood

Zero Energy/Electricity/Emissions Homes

Part 2: Project Outcomes & Lessons Learned

- Energy performance
- What's different about ZNE homes
- Process takeaways
 - High-level lessons learned
 - Resources

Process takeaways: Key steps for getting to ZNE

Getting to ZNE affordably requires asking the right questions—

"How do we achieve ZERO within budget?"

Making Choices Instead of Paying Premiums for Greener Buildings

BY BRUCE COLDHAM

T is often presumed that "green" resourceful building involves a cost premium. This is not a universal truth. Though it is reasonable to assume that a superior product should come at a premium, good performanceenhancing design is more a matter of examining design goals and objectives with a view to redirecting investment. On this basis, a performance enhancement can be seen as favoring one option over another —a choice rather than a cost premium. Unfortunately, due to the rather extreme conservatism in the building industry, many choices are never made explicit. They are never discussed, never offered.

In this article I will address a particular residential opportunity for improving green resourceful building performance by means of conscious choice rather than cost premium. It involves improving the thermal envelope at the expense of committing to a central heating system. Let's begin with three questions:

 Can compact, open-planned houses con with well designed, well constructed, con thermally-efficient building envelopes thr achieve a reasonable standard of comfort by relying solely on the natural convection in co

bute heat throughout the interior space?

- Can a single space heater located in the first floor living space provide comfortable heating for the whole house?
- 3. Can the envelope upgrade cost be covered by savings generated by the elimination of the heating ducts/pipes and the associated fans/pumps? The evidence of recent projects

completed by our office is that we can confidently answer YES to each of these three questions.

With the savings from not investing in central heating, we are able to afford better windows (at least up to a U value NOT "How much EXTRA will it cost?"

Some builders are building ZE at \$0 premium or even saving\$!

FALL 2008 NORTHEAST SUN 7

http://www.candharchitects.com/making-choices-instead-of-paying-premiums/

air circulation within the house to distri-

Set goals early

Quantify performance targets, e.g.:

- Zero net electricity? energy? emissions?
- Energy use intensity (EUI)
- Choose fuel source(s)
 - Mixed-fuel or all-electric?
 - Clean renewable energy solar, other?
 - Onsite and/or offsite?

Ensure commitment at every stakeholder level

Focus on fundamentals Efficient form & orientation

- Keep the form as simple as possible to make it easy to detail & build a high-performing thermal enclosure
- Accommodate high-performance heating, cooling, & water heating equipment in conditioned space
- Design large, rectangular, south/west-facing roof planes for the solar array
- Shade your windows easiest on the south façade; use trees east & west

REALLY HARD to waterproof, insulate, & air seal! LITTLE space for PVs.

Focus on fundamentals High-performance enclosure

- Framing minimize thermal bridges
- Cavity and exterior insulation
 - Choose low-carbon materials: wool, mineral wool, cork, etc.
- Barriers maintain continuity of air, vapor, & moisture barriers
 - Specify target air leakage rate
 - Test to ensure performance

Provide comprehensive specifications, details, & performance testing for all assemblies

Building Science Corporation

Focus on fundamentals Super-efficient mechanical systems

Key factors for heating, ventilating, air conditioning, and water heating:

- Locations of equipment and distribution systems
- Proper sizing no rules of thumb!
- Equipment efficiency
- Distribution system design
- Installation quality/commissioning
- Contractors with experience in highperformance, low-load systems

Essential tasks:

- Load calculations
- Equipment sizing based on the calcs
- Complete system specs

Focus on fundamentals Best-in-class electric devices

Select best-in-class "plug loads"

- Lighting
- Appliances
- Electronics

Listings at: Energystar.gov/products/most_efficient Cee1.org

marketplace.pge.com Ψ

Focus on fundamentals

Renewable energy

CHECK DESIGN PERFORMANCE EARLY & OFTEN:

How much energy will your project use?

Can you produce enough onsite to meet demand?

Energy modeling: use it as a DESIGN tool

Model EARLY and OFTEN not just for code compliance!

Energy modeling: check goal progress often

The main value of energy modeling is to compare RELATIVE IMPACTS of different options (not to predict actual energy use)

the initial model;

are quick and easy!

- Develop a design concept, model that baseline
- Test alternatives evaluate effect of one variable at a time on:
 - energy performance
 - constructability & cost
 - ✓ other aspects of design
- Test different combinations

PV Production 10. Heating Coolina Most of the cost is in Fans and Pumps Hot Wate Liahts Plug Loads after that, iterations Appliances Feb Mar Mav Jun Jul Aua Sep Oct Jan Apr Nov Dec Graph: Resource Refocus LLC

Energy modeling: prioritize investments

Evaluate COSTS and BENEFITS (KBtu/sf-yr/\$)

NOTE: No universal conclusions should be drawn from this chart; it is used to illustrate the importance of using energy modeling to understand projectspecific variables.

yr/ş)	MARINE			HOT-DRY			COLD						
	S	an Fra	ancisco			Palm	Desert		So	uth La	ke Taho	De	
	Suburban		Urban		Suburban		Urban		Suburban		Urban		
Influence of Parameter	Range	Ranking	Range	Ranking	Range	Ranking	Range	Ranking	Range	Ranking	Range	Ranking	
Home orientation HVAC Roof insulation	5.7 11.4 4.3	5 4 6	2.7 13.0 3.0	7 3 6	8.0 2.8 5.5	4 7 6	3.9 24.7 8.6	5 6 7	3.9 15.8 5.2	6 4 5	4.1 20.7	6 2	MOST influence
Wall insulation Window SHGC Window U-values Window area	19.0 18.1 35.4 1.9	2 3 1 7	14.0 6.5 48.4 6.0	2 4 1 5	19.5 19.9 22.6 6.7	3 2 1 5	25.0 87.0 44.2 27.9	4 1 2 3	24.2 36.3 48.6 2.0	3 2 1 7	19.1 0.3 54.8 9.1	3 7 1 4	LEAST influence

Figure 4-23 (p. 125), Energy Free: Homes for a Small Planet

Contract documents hold everyone's feet to the fire

Draw, detail, calculate, size, & SPECIFY:

- Mechanical equipment and distribution systems!
- Framing & insulation
- Barriers
- Assemblies
- Testing requirements

Structure Format for Information to Support Sustainable Design and Product Choices

Make it stick

See it through!

QUALITY MANAGEMENT is the responsibility of the CONSTRUCTION CREW not the HERS rater!

> Monitor performance during construction!

See it through!

Complete drawings & specs are a good start, but then you need to

- Test as you go
- Fix as needed
- Commission!!!
- Verify on completion

Sample report—commissioning done at Habitat for Humanity ZE demonstration home in Stockton

Download report at https://www.etccca.com/reports/zero-net-energy-productionbuilder-demonstration.

Table 4-3. Sample mechanical and enclosure commissioning report, Stockton, CA¹¹

MINI-SPLIT

Daikin heat pump model RXS09LVJU, ¾ ton, SEER 24.5, HSPF 12.5 Daikin ducted air handler FDXS09V95, 30' line set (no refrigerant adjustment required) Wired thermostat Daikin ENVi, web-enabled

13 CFM ₂₅ (hard to seal return)
0 (not measurable, less than 9 CFM ₂₅)
450 psi overnight test, 92-micron evacuation
+7.7 Pa (hard to measure, poor plenum access)
50 watts (high fan speed, 10-watt resolution)
378 CFM (high fan speed, sum of the supplies)
and the second se
104
51
95
56
72
on high
+2.5 Pa
+1.8 Pa
+2.8 Pa

ENERGY RECOVERY VENTILATORS

Panasonic FV-04VE1 (2 units, each rated 40 CFM exhaust, 30 CFM supply, continuous operation)

	Hall ERV	Living Room ERV
Static pressure	-21.0 Pa/+11.3 Pa	30.9 Pa/+9.6 Pa
Fan Watt draw	24.3 Watts	22.2 Watts
	Static pressure Fan Watt draw	Hall ERV Static pressure -21.0 Pa/+11.3 Pa Fan Watt draw 24.3 Watts

BATHROOM EXHAUST FANS				
Panasonic FV-11VQC5				
	Master Bath	Hall Bath		
Rated fan speed (not selectable)	110 CFM	100 CFM		
Humidity set-point	70% RH	70% RH		
Occupany timer set-up	turn off 5 minutes after	turn off 5 minutes after		
	occupant leaves	occupant leaves		
Standy by Watt draw	occupant leaves 0.6 Watts	occupant leaves 0.7 Watts		
Standy by Watt draw Watt draw when operating	occupant leaves 0.6 Watts 22.2 Watts	occupant leaves 0.7 Watts 22.4 Watts		
Standy by Watt draw Watt draw when operating Static pressure	occupant leaves 0.6 Watts 22.2 Watts +19.3 Pa	occupant leaves 0.7 Watts 22.4 Watts +17.1 Pa		
Standy by Watt draw Watt draw when operating Static pressure Measured air flow	occupant leaves 0.6 Watts 22.2 Watts +19.3 Pa 111 CFM	occupant leaves 0.7 Watts 22.4 Watts +17.1 Pa 109 CFM		

ENCLOSURE

Air infiltration	330 CFM ₅₀		
Air infiltration, ventilation system sealed	250 CFM ₅₀ , 1.53 ACH ₅₀		
House pressures when exhaust fans are on:			
Single bathroom fan	-12.8 Pa		
Both bathroom fans	-30.6 Pa		
Both bathroom fans + kitchen range hood	-36.2 Pa		
Non combustion appliances in conditioned spaces			

MEASUREMENT EQUIPMENT

Fan Wattage – Kill-A-Watt P3 installed at electrical panel
 Air handler Wattage – Extech 380940 clamp-on watt meter, 10-watt resolution
 Exhaust air flow – The Energy Conservatory Exhaust Fan Flow Meter
 Supply air flow – The Energy Conservatory Flow Blaster power flow hood
 Manometer – The Energy Conservatory Digital pressure gauge, DG-700

Zero Energy/Electricity/Emissions Homes

Part 2: Project Outcomes & Lessons Learned

- Energy Performance
- What's different about ZNE homes
- Process takeaways
- High-level lessons learned
 Resources

Getting to ZNE affordably means

Designing with the end in mind—

You want to ... Keep the PV cost as low as possible

And therefore ... Achieve extremely low energy loads

That means ... Simplify the form, minimize corners

And ... Design & build a high-performance enclosure

And ... Design, install, & commission high-performance systems

Critical Design Considerations

Be willing to change

Optimize orientation, roof design, and building form

Enclosure approach

- Fine-tune specs & details for optimum performance
- Design for your building systems
 - Factor in your HVAC and DHW system layouts
- Mechanical product selection
 - □ Choose appropriate (low) capacity HVAC

Construction Focus Areas

Trades execution

- Make sure you have a committed team
- Brief all team members on goals
- Facilitate excellent cross-trade coordination
- Quality management
 - Active management is needed!
 - Commission all active systems!
 - Problem-solve as a team

Innovation

Collaboration

- Design—confer and iterate to optimize solutions
- Specification—learn from suppliers & manufacturers

Education

- Take free classes from utilities, regional energy networks, community choice aggregators
- Learn from early adopters
- Read CASE* studies

*"<u>C</u>opy <u>And S</u>teal <u>Everything!</u>"

~ Dennis Creech

- **A.** Bringing something newly produced into working condition.
- **B.** Performing compliance testing, e.g., having a HERS rater measure duct leakage.
- C. Performing tests and making adjustments needed for the system to meet all design objectives, functions, and specifications.
- **D.** The process of collecting user manuals and warranty information for building occupants.

A. Bringing something newly produced into working condition.

B. Performing compliance testing, e.g., having a HERS rater measure duct leakage.

C. Performing tests and making adjustments needed for the system to meet all design objectives, functions, and specifications.

D. The process of collecting user manuals and warranty information for building occupants.
Zero Energy/Electricity/Emissions Homes

Part 2: Project Outcomes & Lessons Learned

- Energy Performance
- What's different about ZNE homes
- Useful lessons learned
- Process takeaways

All-Electric Home Retrofit Guide Download here

ZNE Information Resources

The Switch Is On Incentives & contractors <u>here</u>

PRACTICE GUIDE A Zero Carbon Future for the Built Environment

Building Decarb Practice Guide Download <u>here</u>

All-Electric New Home Guide Download <u>here</u>

PUBLISHED BY ENERGY AUDITOR & RETROFITTER, IN BERKELEY, CALIFORNIA

Download here

ZNE Primer for Architects Download <u>here</u>

ZNE Builder Resource Guide Download <u>here</u>

Download here

RESOURCES

PG&E Residential Code Readiness Project: Redding, CA, Site Monitoring Report

- https://title24stakeholders.com/wp-content/uploads/2019/06/final_code_readiness_report_redding.pdf
- Efficiency Characteristics And Opportunities For New California Homes
 - https://efiling.energy.ca.gov/GetDocument.aspx?tn=65226&DocumentContentId=10844
- ASHRAE Handbook Fundamentals
 - https://www.ashrae.org/technical-resources/ashrae-handbook/description-2017-ashrae-handbook-fundamentals

Real-World Zero Net Energy Homes for California 2020

https://www.gti.energy/wp-content/uploads/2021/05/Real-World-ZNE-Homes-for-California-January-2021.pdf

Architectural Compactness and Hot-Water Delivery, Gary Klein

https://www.jlconline.com/how-to/plumbing/architectural-compactness-and-hot-water-delivery_o

you!

Thank

AnnEdminster.com

- Zero energy consulting
- Design team facilitation
- Writing, research, advocacy

ON BEHALF OF THE PROJECT TEAM:

- California Energy Commission
- Southern CA Gas Co.
- GTI Energy
- Frontier Energy
- Habitat for Humanity of San Joaquin County
 - Rick Chitwood
- Lew Harriman
- Mike MacFarland, Energy Docs
- Bruce King, P.E.

With special thanks to project superintendent extraordinaire George Koertzen!

Slides available at https://www.gti.energy/affordablezne/

Note: all images, unless noted otherwise, were provided by the project team, purchased, or obtained via Creative Commons license.