

Characterization of a Methanation Catalyst for Power to Gas Application

Robert Cattolica*, Liang Ji*, Reinhard Seiser*,**, Michael Long***, and Matthew Summers*** *University of California San Diego, La Jolla, CA, **National Renewable Energy Laboratory, Golden, CO

*** West Biofuels LLC, Woodland, CA

Email: rjcat@ucsd.edu

Abstract

The production of renewable natural gas (RNG) from biogenic resources requires a methanation catalyst to convert CO and CO₂ with H₂ generated from electrical power, i.e. power to gas. Both CO and CO₂ are present in producer gas (Table 1) from the steam gasification of biomass, but at a low H_2/C ratio of ~0.83. In this study a new methanation catalyst⁺ (Ni-Ru-MgO) is evaluated for the production of RNG from producer gas with additional hydrogen. Methanation experiments were conducted in a temperature-controlled flow reactor (Fig. 1) with the catalyst on a high surface area (~100 m²/g) alumina spherical support. Measurements of CO and CO₂ conversion and the production of CH₄ were made with a microGC (Agilent 3000) to determine methanation yield and selectivity with increasing levels of additional hydrogen over a temperature range from 250°C to 450°C.

Methane yield [CH₄]_{out}/[CO+CO₂]_{in} with increasing H/C=[H2]/[C] ratio

Materials and Methods

<u>**Catalyst Preparation:**</u> Wet impregnation of Ni(NO₃)₂·6H₂O, RuCl₃·xH₂O and Mg(NO₃)₂·6H₂O salts. Catalyst Support: Alumina (Sasol Puralox 300/200 – BET surface area – 106 (m²/g)) Catalyst Composition: Ni, Ru and MgO weight proportions of 2.5% MgO and 25% Ni:Ru with a ratio of 95:5.

Reaction Procedure & Conditions

Catalyst:Quartz Wt. Ratio = 1:20, Reaction temperatures: 250°C to 450°C,

Gas flow rate:400 sccm, WHSV - 96000 cc g⁻¹ h⁻¹

Reactor Temperature [C]

Figure 2: Comparison of methanation experiments with chemical equilibrium model for methane yield

CO and CO₂ conversion during methanation with increasing H/C ratio

Figure 1: Schematic of the experimental setup for methanation-catalyst development in a fixed-bed reactor

Stoichiometric methanation reactions for CO and CO₂

 $CO + 3 H_2 = CH_4 + H_2O$ $CO_2 + 4 H_2 = CH_4 + 2 H_2O$

Research gas compositions, increasing $H_2/(CO+CO_2)$ ratio from 0.75 to 4.0

H2/(CO+CO2)H2 CH4 C2H4 N2 CO CO2

Figure 3: CO conversion (a) and CO2 conversion (b) and comparison with chemical equilibrium model

- CO conversion is very high for $T > 375^{\circ}C$, except for lowest H/C = 0.75
- CO conversion produces CO_2 for H/C < 2.0
- CO_2 conversion is negative (no net methanation) until H/C >2.0

Maximum methane yield at 400°C with increasing H/C ratio

Producer Gas	0.813	39.0%	29.0%	19.0%	8.0%	2.0%	3.00%
Research Gas	0.75	34.38%	26.91%	18.70%	-	-	20.0%
	1.50	48.06%	18.85%	13.10%	-	-	20.0%
	2.00	53.36%	15.72%	10.92%	-	-	20.0%
	3.00	60.01%	11.79%	8.20%	-	-	20.0%
	4.00	64.00%	9.43%	6.56%	-	-	20.0%

Table 1: Producer gas composition (molar) from the steam gasification of biomass and research gas compositions for the study of enhanced methanation of CO and CO_2 with the addition of hydrogen.

⁺ "Catalyst for the Methanation of Syngas and Producer Gas," Robert Cattolica, Reinhard Seiser, and Tinku Baidya, The Regents of the University of California, United States Patent, US11,224,865 B2 Jan. 18,2022.

0.50 3.50 2.50 3.00 1.001.50 2.00 4.00

 $H/C = H2/(CO+CO2)_{inlet}$

Figure 4: Maximum methane yield at 400°C and comparison with chemical equilibrium model

- Maximum methane yield is lower than equilibrium and the difference increases with increasing temperature
- With addition of hydrogen at H/C = 4.0, ~80% of the carbon (CO+CO₂) can be converted to produce CH₄
- Using producer gas with H/C = 0.813 and no H₂ addition, ~35% CH₄ can be produced primarily from CO

Acknowledgements

Support for this project was provided by the California Energy Commission (2021 CalTestBed Project – West Biofuels, LLC) and the University of California San Diego, Center for Energy Research.

CALIFORNIA **ENERGY COMMISSION**

