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Methane yield [CH,],,/[CO+CO,]., with increasing H/C=[H2]/[C] ratio
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Materials and Methods Figure 2: Comparison of methanation experiments with chemical equilibrium model for methane yield

Catalyst Preparation: Wet impregnation of Ni(NO,),-6H,0, RuCl;-xH,0 and Mg(NO,),-6H,0 salts. _ _ _ o _ _
_ CO and CO, conversion during methanation with increasing H/C ratio
Catalyst Support: Alumina (Sasol Puralox 300/200 — BET surface area — 106 (m?4/q) )
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* CO conversion is very high for T > 375°C, except for lowest H/C = 0.75

» CO conversion produces CO, for H/C < 2.0

« CO, conversion is negative (no net methanation) until H/C >2.0

Water tank :

Maximum methane yield at 400°C with increasing H/C ratio

Figure 1: Schematic of the experimental setup for methanation-catalyst development in a fixed-bed reactor 100%
Stoichiometric methanation reactions for CO and CO, % T
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Research gas compositions, increasing H,/(CO+CO,) ratio from 0.75 to 4.0 “ e |
30% -t CH4 Yield @400C CH4 Yield Eq @400C
H2/(CO+CO2) H2 CcO CO2 CH4 C2HA4 N2 A
0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
Producer Gas 0.813 39.0% 29.0% 19.0% 8.0% 2.0% 3.00% H/C =H2/(CO+CO2);; e
Figure 4: Maximum methane yield at 400°C and comparison with chemical equilibrium model
Research Gas 0.75 34.38% 26.91% 18.70% - - 20.0% » Maximum methane yield is lower than equilibrium and the difference increases with increasing temperature
1.50 48.06% 18.85% 13.10% - ] 20.0% » With addition of hydrogen at H/C = 4.0, ~80% of the carbon (CO+COQO,) can be converted to produce CH,
2.00 53.36% 15.72% 10.92% - - 20.0% | | N S
» Using producer gas with H/C = 0.813 and no H, addition, ~35% CH, can be produced primarily from CO
3.00 60.01% 11.79% 8.20% - - 20.0%
4.00 64.00% 9.43% 6.56% - - 20.0% Acknowledgements
Table 1:.F.’roducer gas composition (molar) from the steam gasification _Of biomas§ _and research gas Support for this project was provided by the California Energy Commission (2021 CalTestBed Project — West
compositions for the study of enhanced methanation of CO and CO, with the addition of hydrogen. Biofuels, LLC) and the University of California San Diego, Center for Energy Research.
+ : : : : D
“Catalyst for the Methanation of Syngas and Producer Gas,” Robert Cattolica, Reinhard Seiser, and : A Y CALIFORNIA ﬂo
Tinku Baidya, The Regents of the University of California, United States Patent, US11,224,865 B2 UC San Dlego MEEHL  ENERGY COMMISSION WESTBIOFUELS

k Jan. 18,2022. / k /




	Slide Number 1

