Biocrude Potential from Hydrothermal Liquefaction of Wastewater treatment residues and Food waste

Lars Bjørn Silva Thomsen ^{a, b}; Konstantinos Anastasakis ^{a, b}; Patrick Biller ^{a, b} ^a Dept. of Biological and Chemical Engineering, Aarhus University, Denmark ^b WATEC – Centre for Water Technology, Aarhus University

and in 2010, in the EU27 11.5 MT [2], which gives potential for biocrude production from WWTPs	around great					And /or				
METHODS	Table 1: Annual dry matter residue production			O KEY FINDINGS	Biocrude Solids Aqueous phase Gas $100 - \frac{1}{4\%}$ $\frac{1}{4\%}$ \frac					
		Fredericia	Randers			4% <u>9%</u> 1 1 %		⁷⁰ [±]		
 HIL Batch Experiments 2 WWTPs investigated 	Biomass	(ton/year)	(ton/year)	 Batch Experiments Highest biocrude vield at 	80 - 4% 27% 3	6% 34% 33%	80 - 24% 32%	5%	27% 27%	
 Single feedstock and mix in the production 	Fat, oil and grease (FOG)	133	- /	325°C for all feedstock;	8 60 - 9 27%		60 -	E 1	 9% 20%	
proportion.	Food Waste	_	1900	 Higher than expect 	÷ 40 - 78% 17%	0% 24% 37%	→ 40 - → 32	2%	44%	
• 20mL reactor;	Primary Sludge	1372	1600	mixing 33% instead of 30%			- 20 - 42% 47%	<u> </u>	0% 42%	
 3 temperatures: 300, 325 and 350°C; 	Secondary Sludge	3366	1100	for Fredericia and 42%	0	0% 33% 19%	- 0	\$%	23%	
 Residence time 20 mir 	1. Digestate	1705	1580	Randers. (Positive	FOG primary dary secondary	erimental Digestate	Food Waste Primary Secondar	y Mix Expecte	d Jerimental Digestate	
• HTL Continuous Experiments				synergetic effect)	Figure 2: Fredericia HTL yields Figure 3: Randers HTL yields					
• Food waste and Primary			Continuous Experiments	Table 2: Continuous HTL conditions and Biocrude yield						
sludge from Randers;		Trim heater		 Low flow results in higher 	Feedstock	Dry matter	Flow	flow	Filtered biocrude vield	
 ~20L reactor; 				biocrude yields for primary		(%)	Low-med-high	(kg/h)	(%)	
• 325°C;		Heat exchanger		SIUDGE 44.4%;	Primary sludge	2.76	Low	26.8	44.4	
 Single and Mixed 			Hydrocyclone	 Medium flow for Food 	Primary sludge	3.10	Medium	34.3	39.9	
biomass (30%primary	Feed hopper 4	boler	Gravimetric separator	waste results in biocrude	Primary sludge	4.80	High	45.4	15.3	
sludae + 70% Food				yield of 37.9%	Food waste	12.00	Low	21.9	19.6	
$\frac{1}{1} + \frac{1}{1} + \frac{1}{1}$ $\frac{1}{1} + \frac{1}{1}$			 High flow results in higher 	Food waste	10.13	Medium	32.2	37.9		
Aqueous phase Bio-crude				high indexiald for the	Food waste	12.00	High	33.9	32.8	
• Low, meanum and migh Figure 1: HTL pilot plant flow diagram (Aarhus					Mix	9.80	Low	23.1	23.7	
flow rates.	University)			MIXTURE (36.4%).	Mix	9.34	Medium	29.1	35.3	
	-				Mix	9.14	High	36.4	36.4	

digestate 363 tons.

Figure 5: Randers feedstock pathway through HTL

REFERENCES

[1] Skaggs RL, et al. Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States. Renewable and Sustainable Energy Reviews. 2018;82:2640-51 [2] Verlicchi P, et al. Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review. Science of the Total Environment. 2015;538:750-67...

ACKNOWLEDGEMENT

This research was funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program grant No. 849841 (REBOOT-Resource efficient bio-chemical production and waste treatment). The authors would like to thank the WATEC - Centre for Water Technology, Aarhus University for financial support and Vandmiljø Randers and Fredericia Spildevand og Energi for the collaboration and support.

Figure 4: Fredericia feedstock pathway through HTL

CONTACT

Lars Bjørn Silva Thomsen

lthomsen@bce.au.dk

