

Quantification of biogenic carbon in fuel blends through LSC ¹⁴C direct measurement and assessment of uncertainty

James E. Lee^{1*}, Zheng-Hua Li¹, Huamin Wang², Andrew Plymale², Charles Doll² ¹Los Alamos National Laboratory, Earth Environmental Sciences ²Pacific Northwest National Laboratory

21 April 2022

LA-UR-22-23215

^a Los Alamos National Laboratory, Earth and Environmental Science, P.O. Box 1663, Bikini Atoll Rd, Los Alamos, 87545, NM, USA ^b Pacific Northwest National Laboratory, P.O. Box 999, Richland, 99352, Washington, USA

Presentation Overview

Why track biogenic Carbon?

- Co-processing of biogenic (*Pyrolysis Oil*) and fossil feedstock (*VGO*)
- Increasing biogenic blending increases waste products
- How much biogenic (renewable) carbon makes it into fuel products

How is the amount of biogenic carbon determined?

Method	Equip. Cost	Sample Cost	Time	Advantages	Disadvantages
ASTM D6866: AMS ¹⁴ C		\$500	14 days	AccurateUniversal for biomass	External Analysis
ASTM D6866: LSC ¹⁴ C (Benzene)	<\$100k	\$200	1 day	AccurateUniversal for biomass	 Technically difficult Involves toxic/explosive chemicals
Representative Chemical (e.g. ASTM D7806)				• Fast	 Specific to feedstocks and upgrading techniques/conditions Could be faked/cheated

How is the amount of biogenic carbon determined?

Method	Equip. Cost	Sample Cost	Time	Advantages	Disadvantages
ASTM D6866: AMS ¹⁴ C		\$500	14 days	AccurateUniversal for biomass	External Analysis
ASTM D6866: LSC ¹⁴ C (Benzene)	<\$100k	\$200	1 day	AccurateUniversal for biomass	 Technically difficult Involves toxic/explosive chemicals
Representative Chemical (e.g. ASTM D7806)				• Fast	 Specific to feedstocks and upgrading techniques/conditions Could be faked/cheated
¹³ C EA-GCC-IRMS	<\$300k	\$10	15 min	 Fast Applicable for most biomass 	 Need to analyze feedstocks Technical experience
LSC ¹⁴ C Direct	<\$100k	\$30	12 hours	Technically simpleUniversal for biomass	Unknown uncertaintySample Color
Yield Mass Bal.				• Cheap	Accuracy

How is the amount of biogenic carbon determined?

¹⁴C LSC Direct Measurement – It's Easy

- 1. Mix sample with "scintillate cocktail"
- 2. Radioactive atoms from sample decay
- 3. Photons are produced when decay products (beta particles) interact with scintillate solution
- 4. LSC counts:
 - a. # of photon producing events
 - b. LSC counts # photons during each event
 - c. Create Energy Spectrum

Methods for Optimizing and Testing

Process Optimization

• Sample Volume, Counting Period, ROI...

4 types of Biofuels blended

- PNNL HT pine saw dust fuels:
 - Gasoline (volatility < 150°C)
 - Jet Fuel (150-250°C)
 - Diesel (250-350°C)
 - Fossil component: Toluene
 - Blends: 0%, 1%, 2%, 3%, 5%, 10%
- Commercial Diesel Blend
 - B100 + Toluene
 - Blends: 0%, 1%, 2%, 3%, 5%, 10%, 100%

Accounting for the effects of color and chemical composition

Effects of Chemical Composition

- Absorb decay energy or UV light *Effects of Color*
- Absorb UV and visible light

Found: Best way to estimate 'E' is by calibration using control samples w/ similar matrix

 $1-\sigma \approx 0.7\%$ (absolute)

Decreased Counting Efficiency

Performance of ¹⁴C LSC Direct Analysis

Conditions

- 8-hour counting period
- 4-cycles of counting (total 24 hrs)
- PTFE-lined PE vials
- 5 mL of sample

Performance

- Precision: <0.2% C_{Bio}
- Accuracy: <0.5% C_{Bio}

Reproducibility of the measurement

Conditions:

- 3 Identical samples (10 mL B100, 0.8% C)
- Count for 4 hrs, repeat 6 times
 - 8 hr count = 4 hr + 4 hr

Performance (4 hrs)

- Precision <0.25%C_{Bio}
- Repeatability $\approx 0.35 \ \%C_{Bio}$
- Decreases for longer counting periods

Source of Uncertainty in determining %C_{Bio}

Uncertainty = f(V_{sample}, color, ¹⁴C) *To achieve precision* <1 %C_{bio}
5 mL sample < 8 hrs
10 mL sample < 4 hrs

Sources of Uncertainty

- All \rightarrow Carbon Mass ($\sigma \approx 0.3\%$ abs.)
- Dark samples → Efficiency (σ≈0.7% abs.)
- Low ¹⁴C → Counting and Background (σ≈0.05-0.22 min⁻¹)

Application to Dark Colored Samples

Dilution – measuring a small quantity of sample

• HT-Pyoil (AMS = 89.04 pMC)

	1:1	19:1
Vol.	5 mL	0.5 mL
Eff.	<2%	73%
Dev.	N/A	1.0%

Limitations and Future Applications

- Color effects: exponentially more important with darker color
- C-wt %: Req' independent measurement
- Liquid samples only

Limitations and Future Applications

- Color effects: exponentially more important with darker color
- C-wt %: Req' independent measurement
- Liquid samples only

Limitations and Future Applications

- Color effects: exponentially more important with darker color
- C-wt %: Req' independent measurement
- Liquid samples only

CO₂ Conversion-Absorption: Consistent medium, Known C-wt %

Decolorization Techniques: Absorbents, Ozonization, bleaching

(In Prog, subm. to E&F Special Issue)

Extra Slides

• Math

Direct LSC Approach – It's Easy

Analytical Steps to determine %C_{bio}

1) Amount of ¹⁴C: $D_{sample} = \frac{C_{sample} - C_{bkgd}}{E}$

2) Amount Carbon: $m_C = m_{sample} * w_C$

3) Biogenic Carbon Fraction:
$$\% C_{bio} = 100$$
 ·

Variable Cheat-Sheet

 $\frac{D_{sample}/m}{A_{modern} \cdot R}$

	C _{sample}	Sample Count Rate
	C_{bkgd}	Background Noise
	E	Counting Efficiency
$\frac{C}{EF}$	m _{sample}	Sample Mass
	w _C	Carbon Mass Fraction
	A _{modern}	14C Content of Pre- Industrial Wood
	REF	Modifier

