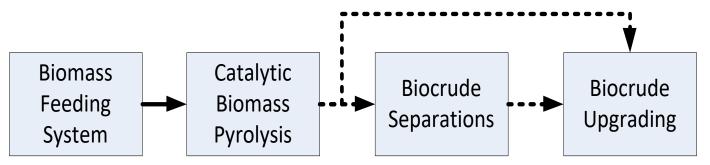


هلا ، سهلا

Recent Progress in Catalytic Biomass Pyrolysis and Biocrude Upgrading

David C. Dayton, Ph. D. RTI Senior Fellow and Biofuels Director

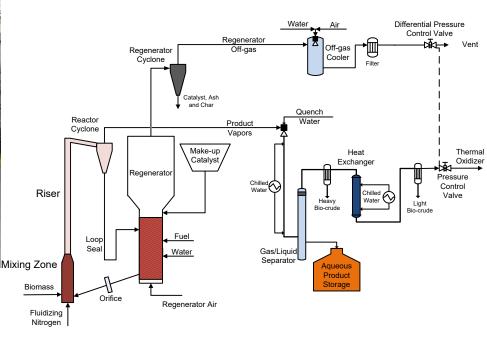

RTI is an independent, nonprofit institute that provides research, development, and technical services to government and commercial clients worldwide.

Our mission is to improve the human condition by turning knowledge into practice.

www.rti.org

Overview

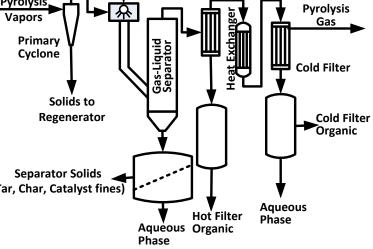
Goal: Improve the carbon efficiency and process economics for producing a <u>renewable diesel blendstock</u>


Objective: Explore synergies between innovative technology solutions:

- biomass feedstock preparation
- pilot-scale catalytic pyrolysis
- biocrude separations
- biocrude hydroprocessing

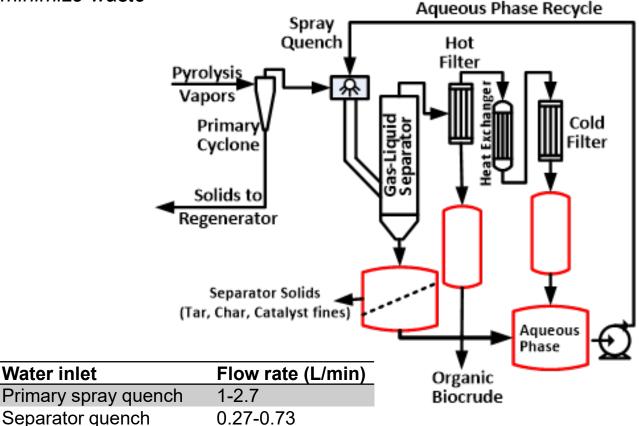
1TPD CFP Biocrude Production – 2mm Douglas Fir Crumbles

Parameter	Design Basis	Operational Values (Avg.)
Pyrolysis temperature (°C)	500	464
Regenerator temperature (°C)	700	604
System pressure (psia)	20	19.7
Biomass feed rate (kg/hr)	45	49.5
Pyrolysis reaction residence time (s)	0.75	0.85



2mm Douglas Fir Crumbles CFP – Operations Summary

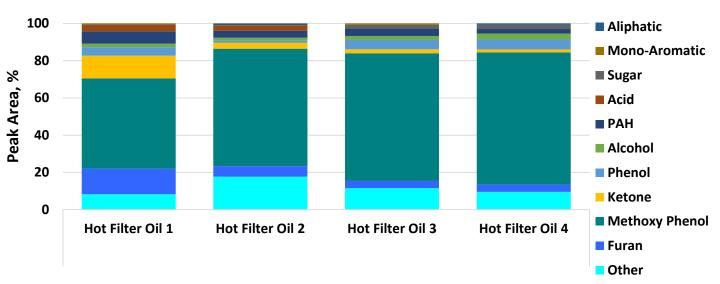
1TPD CFP Product Stream Recovery


	Mass Co	ollection	Mass	
Material ID	(kg)		Yield	Spray Quench
	Input	Output	(total)	Dura husia 🗖 🕇
Biomass, dry	562.23			Pyrolysis Vapors ► T ► A
Biomass	01 50			
Moisture	81.50			Primary V Cyclone
Water	350.95			Cyclone
Py-Gas		61.29	4.4%	, N -
Regen-Gas		287.69	20.7%	Solids to Regenerator
Hot Filter		53.99	3.9%	
Cold Filter		317.34	22.9%	
Day Tank		288.62	20.8%	Separator Solids
Ash Pot		36.44	2.6%	(Tar, Char, Catalyst fines)
Separator		02.04		
Char/Tar		92.04	6.6%	Aque
Separator		F0 22	4.20/	Phase
Catalyst		58.33	4.2%	
Catalyst	150.00	55.08	4.0%	
Oxygen	243.20	112.29	8.1%	
Total	1387.9	1363.1	98.2%	

Hot Filter

1TPD CFP Biocrude Production – Aqueous Recycle

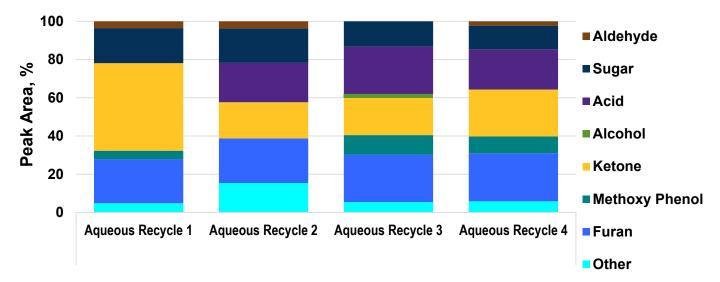
Saturate carbon in the aqueous phase to improve biocrude recovery and minimize waste


2mm Douglas Fir Crumbles - Aqueous Recycle Summary

	Average	feeding rate	b/hr	Average feeding rate – 127.3 lbs/hr				
	Total run	time – 16.7		Total run time – 6.4 hr				
	Mas	s Balance (l	kg)	Carbon	Mass Balance (kg)			Carbon
	Input	Output	Δ	balance	Input	Output	Δ	balance
Totals	1635.8	1514.5	93%	99%	546.3	582.0	107%	98%
Biomass	762.6				370.5			
Ash pot		56.1	3.4%	11%		31.7	5.8%	12%
Separator Solids		146.3	8.9%	12%		66.7	12.2%	13%
Cold Filter Organic		10.0	0.6%	2%		1.8	0.3%	1%
Cold Filter Aqueous		178.5	10.9%	4%		96.8	17.7%	3%
Hot Filter Organic		77.7	4.8%	12%		33.8	6.2%	10%
Day Tank		963.9	58.9%	3%		82.6	15.1%	6%
Pyrolysis Gas		82.0	5.0%	9%		40.2	7.4%	9%
Regen Gas			0.0%	47%		164	30.0%	43%
Water	873.2							
Aqueous Recycle					56.8	64.43	11.8%	0.3%

Aqueous Recycle Summary – Liquid Analyses

Hot Filter Organic										
Sample	Sample Time	KF	рН	C wt%						
HFO-1	12:06 PM	34.1%	3.33	59.0						
HFO-2	1:45 PM	17.2%	3.11	49.8						
HFO-3	3:00 PM	16.3%	3.11	48.9						
HFO-4	4:35 PM	16.6%	3.08	48.4						


Aromatic biocrude product with decreasing acid and sugar content as a function of time on stream

Aqueous Recycle Summary – Liquid Analyses

Aqueous Recycle									
Sample	Sample Time	KF	рΗ	C wt%					
AR-1	10:56 AM	93.8%	2.85	3.3					
AR-2	12:24 PM	92.8%	2.88	3.8					
AR-3	3:26 PM	90%	2.79	5.5					
AR-4	5:00 PM	90.8%	2.83	5.3					

- Ketones, acids and sugars concentrated in aqueous recycle
- Organic biocrude concentration increasing with time on stream

Forest Concepts Feedstock Preparation

- Crumbles rotary-shear system to mill the biomass to a desired size
- Screen process biomass for size and length
- Deliver reactor-ready feedstock to project specifications

- Tolerates high moisture variation
- Narrow particle size distribution
- Lower fines production
- Better flowability from lower aspect ratio
- Lower drying costs
- Less dust for most feedstocks

Crumbler® Rotary Shear

Forest Concepts Feedstock Preparation

Douglas Fir Crumbles						
1mm	1488-kg					
2mm	1675-kg					
4mm	730-kg					

	Ultimate Analysis					Proxi	mate Analy	vsis (wt%)	
Sample	%N	%C	%Н	%S	%O (by difference)	Moisture	Volatile Content	Fixed Carbon	Ash
Douglas fir 1mm	0.00	45.24	6.47	0.0	48.3	8	78	13	1
Douglas fir 2mm	0.00	45.85	6.26	0.0	47.9	8	78	13	1
Douglas fir 4mm	0.12	47.53	6.16	0.0	46.2	8	78	13	1

Biocrude Production – Selected Experiments

	1mm Douglas fir	2mm Douglas fir	4mm Douglas fir
Pyrolysis Temperature	480	480	520
Run Time (hours)	7.3	9.0	5.4
Total Fed (kg)	378	603	403
Stream		Carbon Balance	
Total	91%	91%	90%
Pyrolysis Gas	9%	9%	14%
Liquid	27%	20%	27%
Biocrude	16.7	17.1	13.1
Hot Filter	12	10	7
Cold Filter		1	
Separator Solids	4.7	6.1	6.1
Aqueous Phase	15	9	20
Cold Filter Aqueous	5	3	8
Aqueous Recycle	10	6	12
Char	55%	62%	49%
Ash Pot	11	12	11
Char in Separator Solids	5.3	6.9	6.9
Regen Off Gas	39	43	31

1TPD CFP Biocrude Production Summary

Douglas Fir Crumbles CFP

- 245-L of biocrude from CFP of 1mm, 2mm, and 4mm Douglas Fir Crumbles (1533-kg)
 - Biocrude yields ~17%C
 - Conversion efficiency with 4mm feedstock is lower than 1mm and 2mm feedstock
- Aqueous phase recycle eliminates freshwater consumption and improves biocrude collection efficiency
 - Reduces aqueous stream volume by 84%
 - Biocrude concentration in aqueous stream increases over time
- Overall, need to improve conversion efficiency and reduce char production
 - Increase residence time in mixing zone
 - Reduce feedrate/increase catalyst:biomass
 ratio

Acknowledgements

Energy Efficiency & Renewable Energy

BIOENERGY TECHNOLOGIES OFFICE

Biocrude Production and Upgrading to Renewable Diesel (DE-EE0008509)

INTERNATIONAL

- Ofei Mante
- Joseph Weiner
- Cullen Alexander
- Michael Carpenter
- Kelly Amato

TOPSOE

forestconcepts™

SOUND SCIENCE | DISCIPLINED DESIGN | FUNCTIONAL PRODUCTS

- Jim Dooley
- Mike Perry
- Jason Perry
- Dave Lanning
- Will Bentley
- Jostein Gabrielsen
- Magnus Zingler Stummann
- Sylvain Verdier
- Christian Ejersbo Strebel