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Outline
• Introduction and objective
• Catalytic vapor phase upgrading
• Experimental and results
• Modeling and integration
• Conclusion
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Objective
• Improve the pyrolysis

and catalytic vapor
phase upgrading part of
the B2A process.

• Produce raw bio-oil with
as little oxygen content
as possible

• Start: 40 %
• Goal: 5 %
• Currently: 20 %
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Objective
• Develop catalyst and process to increase the hydrocarbon

oil yield for jet fuel production through incorporating vapor
phase upgrading to fast pyrolysis.
– Convert reactive oxygenates to hydrocarbons through carbon

coupling reactions
– Study the effect of reaction parameters and catalyst properties

• Develop model
– Process design synthesis
– Techno-economic evaluations
– Test new technologies and sensitivity analyses



Why catalytic vapor phase upgrading?

Green Chem., 2018,20, 567-582

• Pyrolysis vapor contains 100s of
reactive oxygenates, soluble in the
aqueous phase.

• Unstable compounds leads to 
polymerization and phase
separation. 

• Selected carbon coupling
reactions will increase the yield for 
the oil phase

• Low pH of the liquid leads to 
corrosion issues and chemical
instability.

• The compounds are
thermodynamically unstable.

Carboxylic acid, alcohols, aldehydes, 
ketones +.



Why catalytic vapor phase upgrading?
Incorporation of CVU improves the fuel carbon
yield of the process. Oxygenates polymerize
and does not end up in gas phase



The rig and experimental setups

• Online gas analysis
• Liquid sample 

collection
• Two-reactor setup

– Fluidized bed
– Fixed bed
– 500 g/h capacity
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Materials and methods

• Fluidization gas
– 60 % 𝐻𝐻2, 40 % 𝑁𝑁2.

• In-house Catalyst pellets
– Pt/TiO2, anatase, 1 wt% Pt, 𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃=3 mm

• Biomass feedstock
– Beechwood sawdust mixture, 250 – 500 µm
– Composition [wt%]: C 51.7, H 6.3, O 41.5, Ash 0.5

– Bone dry



Results from the catalyst – yields 

• Gas – 25 wt%
• Solid – 14 wt%
• Water – 11 wt%
• Oil – 50 wt%

• Oil properties: 
– C: 70 %, H: 10 %, O: 20 % 10 g/h Beechwood, 20 g catalyst, 1.5 l/min 𝐻𝐻2, 1.0 

l/min 𝑁𝑁2. Pyrolysis reactor 500 °C, fixed-bed 
reactor 400 °C. duration 6 h.
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From experimental to modeling
• The most efficient catalyst system was implemented in a 

ASPEN Plus model to scale the production.
• The plant was cost estimated and sensitivity analyses 

were run to pin-point the most sensitive areas.
• The plant was heat integrated using ASPEN Energy 

Analyzer
• Byproducts were studied.
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Model challenges
• Due to varied nature of pyrolysis, high resolution modeling

is difficult
• The solid compounds are non-conventional materials. 

Ash, Char, coke and biomass
• Lack of thermodynamic fluid package to accurately

describe the system.
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Model development
• Modeled using Aspen PLUS and Aspen Energy Analyzer.
• The model has 45 conventional compounds and 3 non-

conventional compounds.
• Beechwood was used as biomass feedstock
• Validated against experimental results from several

groups.
• Scaled on 2 000 t/h biomass



The model



Efficiency and yield calculations

• 𝜂𝜂𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑄𝑄𝐻𝐻𝐻𝐻+𝑄𝑄𝐻𝐻2+𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑄𝑄𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵+𝑄𝑄𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆+𝑊𝑊

• 𝜂𝜂𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 = 87 %
• 𝜂𝜂𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸 = 52 %
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Cost sensitivity analysis
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Sensitivity analysis for yield CVU
• MFSP = Minimum 

fuel selling price
• Complete 

conversion could 
reduce MFSP by 10 
%

• Carbon yield can be 
improved by 5 %-
points
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Sensitivity of hydrogen cost
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Conclusion
• CVU can help increase the efficiency of the process and is 

crucial for upgrading the properties of the raw bio oil.
• CVU enables higher fuel carbon yields
• For a true Green process, the hydrogen has to be 

supplied by non-fossil sources.
• Sorption enhanced reforming is an attractive route for 

producing the necessary hydrogen. 
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Thank you for your attention – Questions?
• The research is performed with financial support from the Research Council of 

Norway (Contract no. 308808) and industrial partners listed below
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