Fast Pyrolysis Of Biomass With Catalytic Vapor Phase Upgrading: Process Design, Optimization, And Integration

Petter Tingelstad*, Adrian Madsen Lager, Albert Miró i Rovira, Kishore Rajendran, Kumar Ranjan Rout and De Chen

TCBiomass 2022 The International Conference on Thermochemical Conversion Science: Biomass & Municipal Solid Waste to RNG, Biofuels & Chemicals

April 19 – 21, 2022, Marriott Brown Palace Hotel and Spa | Denver, Colorado

Outline

- Introduction and objective
- Catalytic vapor phase upgrading
- Experimental and results
- Modeling and integration
- Conclusion

Biomass to aviation fuels – B2A

De Chen Professor

Kumar R. Rout Adjunct Associate professor

Petter Tingelstad PhD Candidate

Kishore Rajendran PhD Candidate

Albert Miro I Rovira PhD Candidate

Master students: Leo Mboyerwa, Adrian Madsen Lager, Karthikai Selvan Sivasamy

Objective

- Improve the pyrolysis and catalytic vapor phase upgrading part of the B2A process.
- Produce raw bio-oil with as little oxygen content as possible
- Start: 40 %
- Goal: 5 %
- Currently: 20 %

Objective

- Develop catalyst and process to increase the hydrocarbon oil yield for jet fuel production through incorporating vapor phase upgrading to fast pyrolysis.
 - Convert reactive oxygenates to hydrocarbons through carbon coupling reactions
 - Study the effect of reaction parameters and catalyst properties
- Develop model
 - Process design synthesis
 - Techno-economic evaluations
 - Test new technologies and sensitivity analyses

Why catalytic vapor phase upgrading?

- Pyrolysis vapor contains 100s of reactive oxygenates, soluble in the aqueous phase.
- Unstable compounds leads to polymerization and phase separation.
- Selected carbon coupling reactions will increase the yield for the oil phase
- Low pH of the liquid leads to corrosion issues and chemical instability.
- The compounds are thermodynamically unstable.

Carboxylic acid, alcohols, aldehydes, ketones +.

Why catalytic vapor phase upgrading?

Incorporation of CVU improves the fuel carbon yield of the process. Oxygenates polymerize and does not end up in gas phase

aldol condesati

The rig and experimental setups

- Online gas analysis
- Liquid sample collection
- Two-reactor setup
 - Fluidized bed
 - Fixed bed
 - 500 g/h capacity

Materials and methods

- Fluidization gas
 - $-60\% H_2, 40\% N_2.$
- In-house Catalyst pellets
 - Pt/TiO2, anatase, 1 wt% Pt, d_{Pellet} =3 mm
- Biomass feedstock
 - Beechwood sawdust mixture, 250 500 μm
 - Composition [wt%]: C 51.7, H 6.3, O 41.5, Ash 0.5
 - Bone dry

Results from the catalyst – yields

- Gas 25 wt%
- Solid 14 wt%
- Water 11 wt%
- Oil 50 wt%

- Oil properties:
 - C: 70 %, H: 10 %, O: 20 %

Pt/TiO₂

10 g/h Beechwood, 20 g catalyst, 1.5 l/min H_2 , 1.0 l/min N_2 . Pyrolysis reactor 500 °C, fixed-bed reactor 400 °C. duration 6 h.

From experimental to modeling

- The most efficient catalyst system was implemented in a ASPEN Plus model to scale the production.
- The plant was cost estimated and sensitivity analyses were run to pin-point the most sensitive areas.
- The plant was heat integrated using ASPEN Energy Analyzer
- Byproducts were studied.

Model challenges

- Due to varied nature of pyrolysis, high resolution modeling is difficult
- The solid compounds are non-conventional materials. Ash, Char, coke and biomass
- Lack of thermodynamic fluid package to accurately describe the system.

Model development

- Modeled using Aspen PLUS and Aspen Energy Analyzer.
- The model has 45 conventional compounds and 3 nonconventional compounds.
- Beechwood was used as biomass feedstock
- Validated against experimental results from several groups.
- Scaled on 2 000 t/h biomass

The model

Efficiency and yield calculations

- $\eta_{Energy} = \frac{Q_{HC} + Q_{H_2} + Q_{Steam}}{Q_{Biomass} + Q_{Heat} + W}$
- $\eta_{Energy} = 87 \%$
- $\eta_{Carbon} = 52 \%$

NTNU

Cost sensitivity analysis

NTNU

Sensitivity analysis for yield CVU

Sensitivity of hydrogen cost

Conclusion

- CVU can help increase the efficiency of the process and is crucial for upgrading the properties of the raw bio oil.
- CVU enables higher fuel carbon yields
- For a true Green process, the hydrogen has to be supplied by non-fossil sources.
- Sorption enhanced reforming is an attractive route for producing the necessary hydrogen.

Thank you for your attention – Questions?

• The research is performed with financial support from the Research Council of Norway (Contract no. 308808) and industrial partners listed below

QUANTAFUEL

