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USDRIVE Net Zero Carbon Fuel Tech Team (NZTT)
MISSION: Drive research, development, and demonstration 
of renewable energy solutions for the transportation sector 
through an assessment of the carbon intensity, 
technoeconomic readiness, and challenges for volume 
implementation of net-zero carbon fuel pathways.

USDRIVE NZTT: Fuels Industry, US Department of Energy, 
Electric Utilities, Automotive Industry, Associate members, 
Analysis task by the four participating National Labs (NREL, 
PNNL, ANL, and LLNL)

OUTCOME: Completed initial techno-economic analysis and 
life cycle assessment (TEA/LCA) to understand the potential 
of near-term pathways for generating net-zero carbon fuels.

Roadmap Report: https://www.energy.gov/sites/default/files/2021-
04/NZTT_Roadmap_v202010401_FINAL.pdf
FY20 Report : https://www.energy.gov/eere/vehicles/articles/us-drive-net-zero-carbon-fuels-
technical-team-analysis-summary-report-2020

https://www.energy.gov/sites/default/files/2021-04/NZTT_Roadmap_v202010401_FINAL.pdf
https://www.energy.gov/eere/vehicles/articles/us-drive-net-zero-carbon-fuels-technical-team-analysis-summary-report-2020
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Process models 
developed in Aspen Plus 

Discounted cash-flow 
rate of return (DCFROR) 

analysis and 
sustainability assessment 

conducted

Key metrics identified 
and leveraged to 

generate comparative 
analysis 

Approach: Techno-
Economic Analysis (TEA)

$

Reducing the carbon 
dioxide (CO2) emissions 
from the transportation 
industry is a key target 

for achieving global net-
zero carbon goals. 

Numerous options exist 
for decarbonization 

strategies, what are the 
tradeoffs between 

TEA/LCA?

Background: 
Sustainable Aviation Fuel (SAF)
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Key Metrics
• Derived from TEA to produce cross-comparison

• Selected to harmonize economic and environmental factors

• Considers “time-to-deployment” as a key indicator

Metric Definition Unit
Cost Minimum methanol selling price $/kg

Carbon efficiency
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝐶𝐶 𝑝𝑝𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚)

𝑇𝑇𝐶𝐶𝑝𝑝𝐶𝐶𝑚𝑚 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝐶𝐶 (𝐶𝐶𝑖𝑖𝐶𝐶𝑚𝑚𝐶𝐶𝑏𝑏𝑏𝑏 𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶)
%

Energy efficiency
𝑃𝑃𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚)

𝑇𝑇𝐶𝐶𝑝𝑝𝐶𝐶𝑚𝑚 𝑚𝑚𝐶𝐶𝑚𝑚𝐶𝐶𝑒𝑒𝑒𝑒 𝑖𝑖𝐶𝐶 (𝐶𝐶𝑖𝑖𝐶𝐶𝑚𝑚𝐶𝐶𝑏𝑏𝑏𝑏,𝐿𝐿𝐶,𝑝𝑝𝐶𝐶𝐶𝐶𝑝𝑝𝑚𝑚𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝐶𝐶𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑒𝑒 𝐶𝐶𝐶𝐶𝑝𝑝 𝑚𝑚𝑚𝐶𝐶𝑝𝑝)
%

Life-cycle GHG emissions equivalent grams of CO2 per MJ of FT fuel produced and used gCO2e/MJFT

Technology Readiness 
Level (TRL) U.S. Department of Energy (DOE) TRL Guide 2011 Scale

1-9
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Baseline Assumptions
PROPOSED COSTS: SOURCE

Fossil H2 ($/kg) $1.57 NREL SOT models

Renewable H2 ($/kg) $1.38-$6.35 (baseline $4.50) H2A Report 2020

Grid Electricity ($/kWh) $0.068 FY20 USDRIVE Report

Renewable Electricity ($/kWh) $0.02-$0.10 FY20 USDRIVE Report

Natural Gas ($/MMBTU) $3.39 FY20 USDRIVE Report

Renewable Natural Gas ($/MMBTU) $7.48-$29.44 (baseline $12.00) FY20 USDRIVE Report

NREL SOT: https://www.nrel.gov/docs/fy21osti/79986.pdf
H2A Report 2020: https://www.nrel.gov/docs/fy21osti/77610.pdf
FY20 USDRIVE Report: https://www.energy.gov/eere/vehicles/articles/us-drive-net-zero-carbon-fuels-technical-team-analysis-summary-report-2020

https://www.nrel.gov/docs/fy21osti/79986.pdf
https://www.nrel.gov/docs/fy21osti/77610.pdf
https://www.energy.gov/eere/vehicles/articles/us-drive-net-zero-carbon-fuels-technical-team-analysis-summary-report-2020
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Biomass Gasification to Fuels

Case CO2 capture Electricity Heat H2
3.1.0 - Biomass (internal) Biomass (internal) -

3.1.1.2 - Biomass (internal) Import RNG -
3.1.2.4b - Biomass (internal) Biomass (internal) Renewable

3.2.1 With CCS Renewable (for CCS) Biomass (internal) -
3.3.2 With CCU Renewable (for CCU) Biomass (internal) Renewable

• CCS is carbon capture and storage
• CCU is carbon capture and utilization
• RNG is renewable natural gas 
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Biomass Gasification Preliminary 
TEA Results • Gasification and Fischer Tropsch (FT) 

synthesis technologies present a near-term 
viable pathway for biomass-derived fuel 
production. 

• CCS is another near-term carbon 
mitigation strategy with a high TRL which 
could readily be implemented and remove 
a large fraction of CO2 emissions, with a 
low-cost burden. 

• CCU technologies present a strategy for 
reincorporating CO2 to fuels. Implementing 
a CCU system results in the largest increase 
in carbon efficiency, up to 52.9%, but 
should be viewed as a long-term strategy 
for carbon mitigation and utilization in the 
biomass-to-fuels via FT pathway. 
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Biomass Gasification 
Preliminary LCA Results

• The CI of SAF from base case is 93% 
lower than the CI of petroleum jet 
mainly by using biomass for utility

• External RNG input as a process fuel 
reduces the biomass inputs but 
increases the net CI of FT fuel. Imports 
0.34 MJ of additional renewable H2 can 
reduce the CI of SAF to 4.3 gCO2e/MJ, 
while generating 0.64 MJ of additional 
FT fuels compared to the base case

• With CCS case reduces the CI of FT fuel 
to -42.4 gCO2e/MJ with only 0.02 MJ of 
additional renewable electricity. 

• CCU technology needs significant 
amounts of renewable H2(0.36 MJ) and 
electricity (0.43 MJ) to reduce the CI to 
3.4 gCO2e/MJ while saving 39% of 
biomass input

* CI of petroleum jet: 84.5 gCO2e/MJ
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Direct Air Capture CO2 and CO2 to SAF

Case Electricity NG H2
5.X.0 US mix fossil SMR
5.X.1 renewable fossil SMR
5.X.2 renewable landfill SMR
5.X.3 renewable landfill Renewable
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DAC CO2 to SAF Preliminary TEA Results
• Both DAC and CO2-to-CO electrolysis are low TRL 

technologies, require significant R&D efforts. 
Coupling with the established FT technology 
shows potential for the development of a novel 
pathway with high carbon efficiency in the 
baseline design (66.8%). 

• CCS technologies has key environmental benefits, 
but this strategy does not recover the costs of 
expensive DAC CO2 and does not improve carbon 
or energy efficiency to fuels. 

• CCU strategy requires only the addition of an 
amine flue-gas scrubbing system and can utilize 
the existing CO2-to-CO framework to improve 
both carbon and energy efficiency to fuels. 

• Due to low TRL and high near-term costs, the DAC 
CO2-to-SAF pathway should be considered a long-
term option for fuels. 
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DAC CO2 to SAF Preliminary LCA Results

• DAC CO2 to fuel is energy intensive, requiring 1.2 MJ of H2, 0.4 MJ of NG, and 0.5 MJ of electricity.
• Without using renewable energy, the DAC CO2 FT process does not provide CI reduction benefits, but 

shifting to renewable energy sources significantly reduces the CIs of FT fuels.
• CCS decreases CI by 25.5 gCO2e/MJ.
• CCU decreases CI by 2–20 gCO2e/MJ compared to baseline.
• If using renewable energy sources, the CIs of CCS and CCU become -18 and 5 gCO2e/MJ, respectively.

* CI of petroleum jet: 84.5 gCO2e/MJ
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Conclusion and Key Takeaways
• Biomass gasification is capable of meeting market competitive costs and displays a high 

TRL, and a promising technology for the near-term commercialization. 

• The direct CO2 pathway is comparatively much lower in TRL and requires the substantial 
R&D efforts pushing technology feasibility and economic viability. 

• Future analyses should consider process designs that are optimized across a variety of 
economic and environmental metrics.

• To produce net-zero carbon fuel:

 Using renewable energy inputs (electricity, H2, and NG) 

 Applying CCS option provides significant emission reductions with a slight increase in 
electricity consumption for CO2 capture and compression

 CCU coupled with renewable energy can reduce the CIs while providing additional fuel 
outputs to maximize carbon yields from carbon-based feedstocks
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