

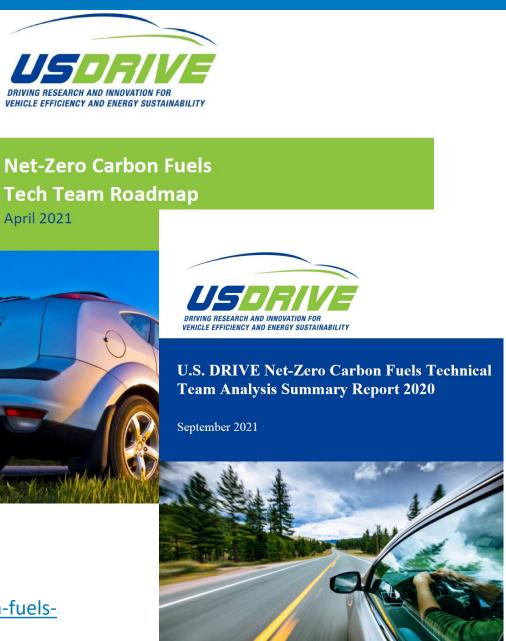
TECHNO-ECONOMIC EVALUATION OF STRATEGIES TO APPROACH NET-ZERO CARBON SUSTAINABLE AVIATION FUEL VIA WOODY BIOMASS GASIFICATION AND FISCHER-TROPSCH SYNTHESIS

Ling Tao and Kylee Harris, National Renewable Energy Laboratory Uisung Lee and Eunji Yoo, Argonne National Laboratory TC Biomass, Denver, CO April 20th, 2022

1 Background & Techno-Economic Approach

2 Identification of Key Metrics

4 Conclusions and Learnings

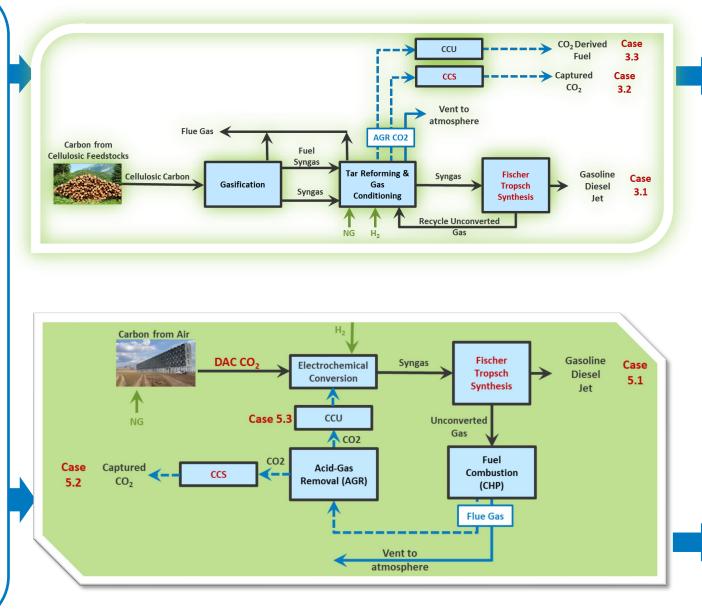

USDRIVE Net Zero Carbon Fuel Tech Team (NZTT)

MISSION: Drive research, development, and demonstration of renewable energy solutions for the transportation sector through an assessment of the carbon intensity, technoeconomic readiness, and challenges for volume implementation of net-zero carbon fuel pathways.

USDRIVE NZTT: Fuels Industry, US Department of Energy, Electric Utilities, Automotive Industry, Associate members, Analysis task by the four participating National Labs (NREL, PNNL, ANL, and LLNL)

OUTCOME: Completed initial techno-economic analysis and life cycle assessment (TEA/LCA) to understand the potential of near-term pathways for generating net-zero carbon fuels.

Roadmap Report: <u>https://www.energy.gov/sites/default/files/2021-</u> 04/NZTT Roadmap v202010401 FINAL.pdf FY20 Report : <u>https://www.energy.gov/eere/vehicles/articles/us-drive-net-zero-carbon-fuels-</u> technical-team-analysis-summary-report-2020


Background: Sustainable Aviation Fuel (SAF)

Reducing the carbon dioxide (CO_2) emissions from the transportation industry is a key target for achieving global netzero carbon goals.

Numerous options exist for decarbonization strategies, what are the tradeoffs between TEA/LCA?

Approach: Techno-Economic Analysis (TEA)

(aspentech

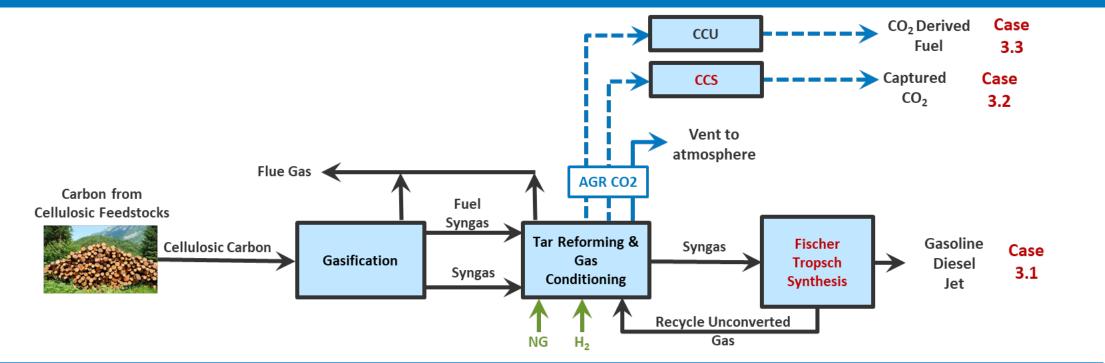
Process models developed in Aspen Plus

Discounted cash-flow rate of return (DCFROR) analysis and sustainability assessment conducted

Key metrics identified and leveraged to generate comparative analysis

	Metric	Definition	Unit
Ċ	Cost	Minimum methanol selling price	\$/kg
? 2	Carbon efficiency	Carbon in product (methanol) Total carbon in (biomass <u>and</u> CO2)	%
2	Energy efficiency	$\frac{Product \ LHV(methanol)}{Total \ energy \ in \ (biomass, H_2, process \ electricity \ and \ heat)}$	%
LCA	Life-cycle GHG emissions	equivalent grams of CO ₂ per MJ of FT fuel produced and used	gCO ₂ e/MJ _{FT}
	Technology Readiness Level (TRL)	U.S. Department of Energy (DOE) TRL Guide 2011	Scale 1-9

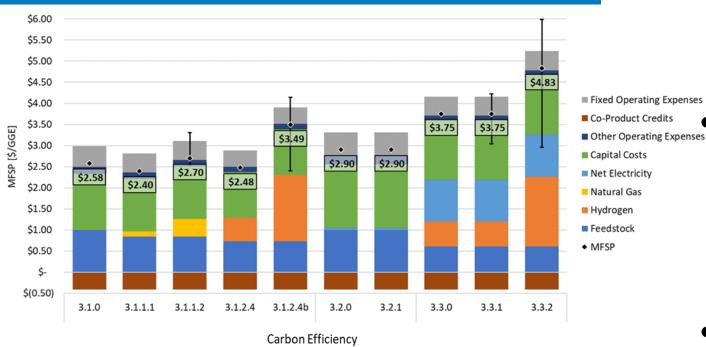
Key Metrics

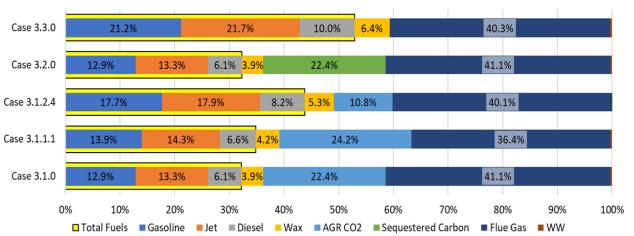

- Derived from TEA to produce cross-comparison
- Selected to harmonize economic and environmental factors
- Considers "time-to-deployment" as a key indicator

Baseline Assumptions

PROPOSED COSTS:		SOURCE
Fossil H2 (\$/kg)	\$1.57	NREL SOT models
Renewable H2 (\$/kg)	\$1.38-\$6.35 (baseline \$4.50)	H2A Report 2020
Grid Electricity (\$/kWh)	\$0.068	FY20 USDRIVE Report
Renewable Electricity (\$/kWh)	\$0.02-\$0.10	FY20 USDRIVE Report
Natural Gas (\$/MMBTU)	\$3.39	FY20 USDRIVE Report
Renewable Natural Gas (\$/MMBTU)	\$7.48-\$29.44 (baseline \$12.00)	FY20 USDRIVE Report

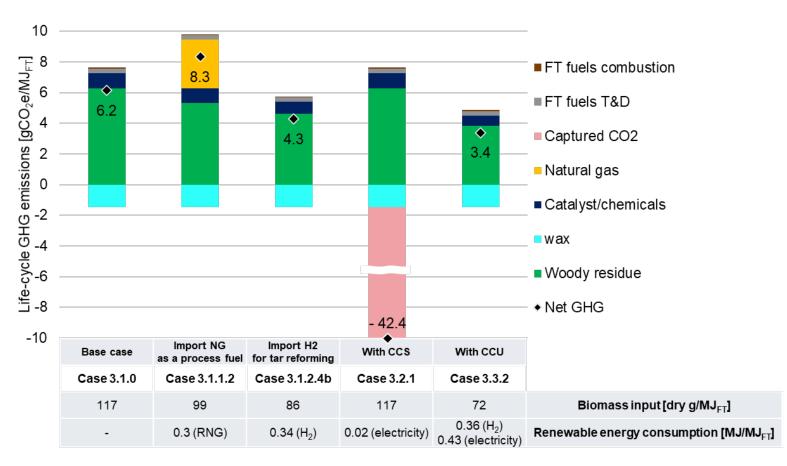
NREL SOT: <u>https://www.nrel.gov/docs/fy21osti/79986.pdf</u> H2A Report 2020: <u>https://www.nrel.gov/docs/fy21osti/77610.pdf</u> FY20 USDRIVE Report: <u>https://www.energy.gov/eere/vehicles/articles/us-drive-net-zero-carbon-fuels-technical-team-analysis-summary-report-2020</u>


Biomass Gasification to Fuels

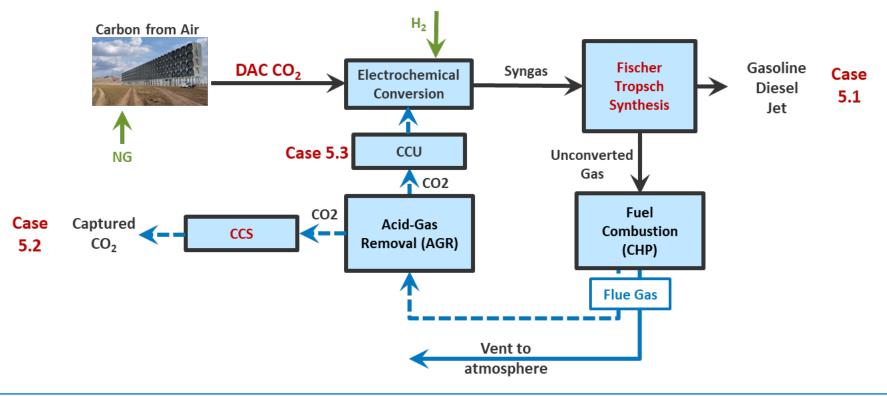


Case	CO ₂ capture	Electricity	Heat	Η ₂
3.1.0	-	Biomass (internal)	Biomass (internal)	-
3.1.1.2	-	Biomass (internal)	Import RNG	-
3.1.2.4b	-	Biomass (internal)	Biomass (internal)	Renewable
3.2.1	With CCS	Renewable (for CCS)	Biomass (internal)	-
3.3.2	With CCU	Renewable (for CCU)	Biomass (internal)	Renewable
	CCS is carb	on capture and storage		

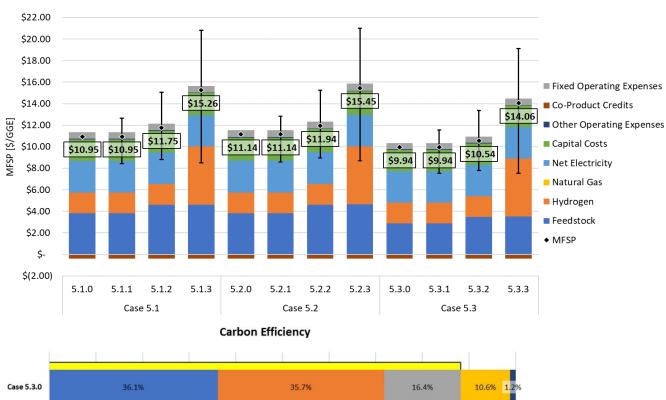
- CCS is carbon capture and storage
- CCU is carbon capture and utilization
- RNG is renewable natural gas

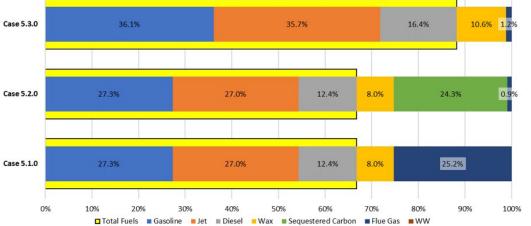

Biomass Gasification Preliminary TEA Results

- Gasification and Fischer Tropsch (FT) synthesis technologies present a near-term viable pathway for biomass-derived fuel production.
- CCS is another near-term carbon mitigation strategy with a high TRL which could readily be implemented and remove a large fraction of CO₂ emissions, with a low-cost burden.
- CCU technologies present a strategy for reincorporating CO₂ to fuels. Implementing a CCU system results in the largest increase in carbon efficiency, up to 52.9%, but should be viewed as a long-term strategy for carbon mitigation and utilization in the biomass-to-fuels via FT pathway.

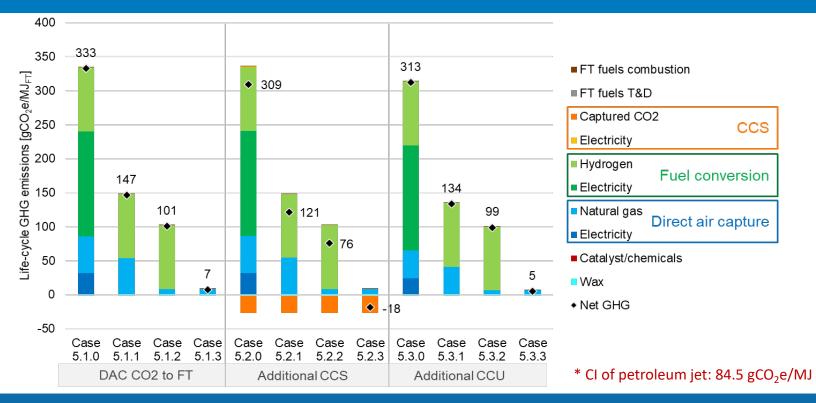

Biomass Gasification Preliminary LCA Results

* CI of petroleum jet: 84.5 gCO₂e/MJ


- The CI of SAF from base case is 93% lower than the CI of petroleum jet mainly by using biomass for utility
- External RNG input as a process fuel reduces the biomass inputs but increases the net CI of FT fuel. Imports 0.34 MJ of additional renewable H₂ can reduce the CI of SAF to 4.3 gCO₂e/MJ, while generating 0.64 MJ of additional FT fuels compared to the base case
- With CCS case reduces the CI of FT fuel to -42.4 gCO₂e/MJ with only 0.02 MJ of additional renewable electricity.
- CCU technology needs significant amounts of renewable H₂(0.36 MJ) and electricity (0.43 MJ) to reduce the CI to 3.4 gCO₂e/MJ while saving 39% of biomass input


Direct Air Capture CO₂ and CO₂ to SAF

Case	Electricity	NG	H ₂
5.X.0	US mix	fossil	SMR
5.X.1	renewable	fossil	SMR
5.X.2	renewable	landfill	SMR
5.X.3	renewable	landfill	Renewable


DAC CO₂ to SAF Preliminary TEA Results

- Both DAC and CO₂-to-CO electrolysis are low TRL technologies, require significant R&D efforts.
 Coupling with the established FT technology shows potential for the development of a novel pathway with high carbon efficiency in the baseline design (66.8%).
- CCS technologies has key environmental benefits, but this strategy does not recover the costs of expensive DAC CO₂ and does not improve carbon or energy efficiency to fuels.
- CCU strategy requires only the addition of an amine flue-gas scrubbing system and can utilize the existing CO₂-to-CO framework to improve both carbon and energy efficiency to fuels.
- Due to low TRL and high near-term costs, the DAC CO₂-to-SAF pathway should be considered a longterm option for fuels.

DAC CO₂ to SAF Preliminary LCA Results

- DAC CO₂ to fuel is energy intensive, requiring 1.2 MJ of H₂, 0.4 MJ of NG, and 0.5 MJ of electricity.
- Without using renewable energy, the DAC CO₂ FT process does not provide CI reduction benefits, but shifting to renewable energy sources significantly reduces the CIs of FT fuels.
- CCS decreases CI by 25.5 gCO₂e/MJ.
- CCU decreases CI by 2–20 gCO₂e/MJ compared to baseline.
- If using renewable energy sources, the CIs of CCS and CCU become -18 and 5 gCO₂e/MJ, respectively.

Conclusion and Key Takeaways

- Biomass gasification is capable of meeting market competitive costs and displays a high TRL, and a promising technology for the near-term commercialization.
- The direct CO₂ pathway is comparatively much lower in TRL and requires the substantial R&D efforts pushing technology feasibility and economic viability.
- Future analyses should consider process designs that are optimized across a variety of economic and environmental metrics.
- To produce net-zero carbon fuel:
 - Using renewable energy inputs (electricity, H₂, and NG)
 - Applying CCS option provides significant emission reductions with a slight increase in electricity consumption for CO₂ capture and compression
 - CCU coupled with renewable energy can reduce the CIs while providing additional fuel outputs to maximize carbon yields from carbon-based feedstocks

Acknowledgements

Bioenergy Technologies Office (BETO): Ian Rowe and Andrea Bailey

- **NREL:** Kylee Harris, Jenny Huang, Gary Grim, Ling Tao
- ANL: Uisung Lee, Eunji Yoo, Michael Wang
- **PNNL:** Lesley Snowden-Swan, Aye Meyer
- LLNL: A.J. Simon, Hannah Goldstein, Daniel Sanchez (Berkeley)
- **USDRIVE NZTT Tech Team**

Thank you

www.nrel.gov

Presenter Contact: Ling.Tao@nrel.gov

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office.

