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• 50 Ton Per Day Project (Redfield, IA)
‒ Privately financed by Stine Seed Farms
‒ Engineering, Procurement, and 

Construction provided by Frontline 
Bioenergy

‒ Conversion of corn stover into phenolic 
oil and biochar
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Autothermal pyrolysis technology is emerging 
from the laboratory to demonstration-scale

Iowa State University is the technology provider



Lignocellulosic 
Biomass

Product Recovery

Unrefined sugars 
from polysaccharides

Unrefined acetate 
from hemicellulose

Autothermal Pyrolysis

Phenolic oil 
from lignin Biochar

First Generation
Products

Ethanol Bio-asphalt Soil amendment

Potential 
Future Products

-Pharmaceuticals
-Polymers
-Solvents

-Stationary diesel 
engine fuel

-Drop-in fuels
-Biobased chemicals

-Acetone
-Acetic acid
-Bio-cement
-Alcohols

-Activated carbon

In-plant 
thermal 
energy
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Py refinery: Producing fuels and 
chemicals from lignocellulosic biomass



Enabling Technology: Autothermal Pyrolysis
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• Advantages
− Heat transfer no longer bottleneck

• Challenge 
− Preserve organic yields of bio-oil 

under partial oxidative conditions

φ = 𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Autothermal
Pyrolysis

0.06 ≤ φ ≤ 0.15
Gasification

0.15 ≤ φ ≤ 0.35

Pyrolysis
φ = 0.00

Combustion
φ > 1.0

Part of the biomass and/or pyrolysis products are oxidized 
to provide energy for endothermic pyrolysis reactions



Process Intensification: Breaking the heat 
transfer bottleneck in pyrolysis
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Heat transfer from 
reactor perimeter

Heat transfer from 
tube (t) array

Heat transfer from 
granular heat carrier

• Energy demand for an endothermic reaction is provided by 
energy release from an exothermic reaction

• Heat transfer scales as square of reactor diameter while energy 
demand for pyrolysis scales as cube of reactor diameter

• Providing enthalpy of pyrolysis through partial oxidation of 
products (autothermal pyrolysis) reduces size and cost of 
pyrolyzer compared to a heat transfer-limited reactor
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Scaling up Autothermal Pyrolysis to a 
Demonstration Unit
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Pilot
Estimating reactor size while

maintaining flexible operating conditions

Demo



Product Yield (wt.%)Reactant & Product Flows (kg h-1)

Nitrogen-blown Pyrolysis

Untreated Corn Stover 7.8 kg/h

Oxygen 2.0

Autothermal Pyrolysis/
Process Intensification

Untreated Corn Stover 21.9 kg/h

NCG’s

Light Ends

Heavy Ends
Biochar

1.5

3.1

1.5
1.7

NCG’s

Light Ends

Heavy Ends

Biochar

Unaccounted

6.3

8.9

4.2

4.4

0.1

28.8 %

40.6 %

19.2 %

20.1 %

0.5 %

19.2 %

39.7 %

19.2 %
21.8 %

Process Intensification in Corn Stover Pyrolysis

Polin, et al. (2019) Conventional and autothermal pyrolysis of corn stover: Overcoming the processing 
challenges of high-ash agricultural residues, Journal of Applied and Analytical Pyrolysis 143, 104679. 
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Oxygen 2.0

Autothermal Pyrolysis/
Process Intensification

Untreated Corn Stover 21.9 kg/h

Oxygen 2.0

Autothermal Pyrolysis/
Process Intensification

Iron Sulfate Pretreatment
Corn Stover 22.2 kg/h

NCG’s

Light Ends

Heavy Ends
Biochar

1.5
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8.9
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0.1
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Light Ends

Heavy Ends

Biochar
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5.3

6.6

7.4

3.9

1.0
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20.1 %

0.5 %
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4.5 %
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Sugar Production from Corn Stover Pyrolysis

Polin, et al. (2019) Conventional and autothermal pyrolysis of corn stover: Overcoming the processing 
challenges of high-ash agricultural residues, Journal of Applied and Analytical Pyrolysis 143, 104679. 



Phenolic oil
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• Product of the fast pyrolysis of woody 
or herbaceous biomass

• Derived from the lignin in biomass

• Heating value is much higher than 
whole bio-oil

• Contains both phenolic monomers 
and oligomers

• Challenge:  High viscosity and 
instability in storage and under 
heating

HO

HO

O
O

OH

HO

Lignin in its natural habitat

Examples of phenolic 
monomers found in 

phenolic oil



Exploiting the challenges of phenolic 
oil: Turn it into bio-asphalt
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Test sample of bio-asphalt 
from red oak

Paving Des Moines bicycle path (2010)

Still in use today (2020)



Successful formulations of bio-asphalt 
binder blends using phenolic oil

PG58-28
Asphalt Binder

Phenolic
Oil

Ground
Tire

Rubber

PG
High
(°C)

PG
Low
(°C)

AASHTO Rated 
Performance Grade

100% (control) 0% 0% 60.4 -30.4 P 58-28

90% 9% 1% 60.5 -28.5 P 58-28

80% 18% 2% 61.9 -27.9 P 58-22

70% 27% 3% 72.5 -27.7 P 70-22
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• Phenolic oil (PO) heated at 110oC to drive off moisture
• Blend of 90% PO and 10% ground recycled tire rubber heated at 120oC for 1 hr
• PO and tire rubber blend mixed with PG 58-28 asphalt binder

Minimum pavement design temperature (oC )*
Average 7-day maximum design temperature (oC )

Performance Grade

* Minimum temperature is negative degrees Centigrade



Biochar as a Soil Amendment
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• Biochar has several benefits for 
soil
‒ Enables moisture management in 

various soil types
‒ Returns much of the inorganic content 

of biomass to the soil
‒ Enhances beneficial microbial activity
‒ Can be used to adjust soil pH
‒ Carbon sequestration agent
‒ Work in progress to formulate as 

slow- release P and N fertilizer
• Tests confirm that biochar from 

auto-thermal pyrolysis has no 
negative effects on seed 
germination

• Preliminary plot studies have 
shown benefits

• Market value is challenging to 
determine

Biochar from fast pyrolysis is dusty

Granulated biochar improves 
storage and field application



Biochar for Carbon Removal
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• Stine Pyrolyzer expected 
to sequester 4000 tons 
CO2 equivalent per year 
from pyrolysis of 50 tons 
of corn stover into biochar
as carbon sequestration 
agent

• Carbon XPRIZE grand 
prize, sponsored by Elon 
Musk, requires 1000 tons 
of CO2 removed and 
durably stored within one 
year

• “Phase 1 Milestone Prize” 
application submitted
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Material/ Energy Price

Corn Stover $41/tonne*

Natural Gas $5.68/MMBtu

Ferrous Sulfate $550/tonne

Process Water $0.20/tonne

Electricity $0.067/kWhr

Product Value 
($/tonne)

Yield (kg/kg 
corn stover)*

Sugars 327 0.118

Phenolic Oil 500 0.181

Biochar 80 0.14

• Previous pyrolysis AspenPlus and AspenHYSYS models modified to reflect changes in equipment, 
yields and assumptions due to autothermal operation, biomass pretreatments, and modular 
manufacturing

• GREET, SimaPro and EcoInvent used for GHG emission analysis
• Plant capacity is 250 tpd corn stover
• Nominal Minimum Sugar Selling Price (MSSP) is estimated to be $218
• Carbon removal rate estimated to be 0.32kg of C/kg of C in the biomass
• Due to lower pretreatment requirements and higher product yields, modular autothermal pyrolysis 

biorefinery using wood biomass will have higher profitability than  corn stover used in this analysis
Operating Cost Assumptions (Nominal)

Assumptions on Product Value and Yield

*Sesmero et al. (2015) J. Ag and 
Resource Econ. 40(3):425-441

Techno-Economic Analysis

*Moisture free basis



Demonstration Plant:
3D Solid Model

Finally! An Economic Pyrolysis Project
Image courtesy of Frontline Bioenergy

15



Modular Construction
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Photos courtesy of Frontline Bioenergy



Modular Transportation
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Photos courtesy of Frontline Bioenergy



Modular Transportation
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Photos courtesy of Frontline Bioenergy



Biomass
Handling

Biomass
Conversion

Bio-Oil
Recovery

Biochar
Recovery

Thermal Oxidizer
Emissions ControlUtilities

Air N2 Steam

Onsite Construction
Overall System View

Photos courtesy of Frontline Bioenergy



Onsite Construction
Outdoor Equipment
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Photos courtesy of Frontline Bioenergy



For more information :
BEI Webpage: http://www.biorenew.iastate.edu/

Lysle Whitmer – Sr. Research Engineer, BEI
Phone: 515-296-6309
E-mail: lwhitmer@iastate.edu

Joseph Polin – Frontline BioEnergy, LLC
Phone: 515-292-1200 x109
E-mail: jpolin@frontlinebioenergy.com
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http://www.biorenew.iastate.edu/
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