IOWA STATE UNIVERSITY Bioeconomy Institute

Autothermal Pyrolysis: Modular Processing at the Demonstration Scale

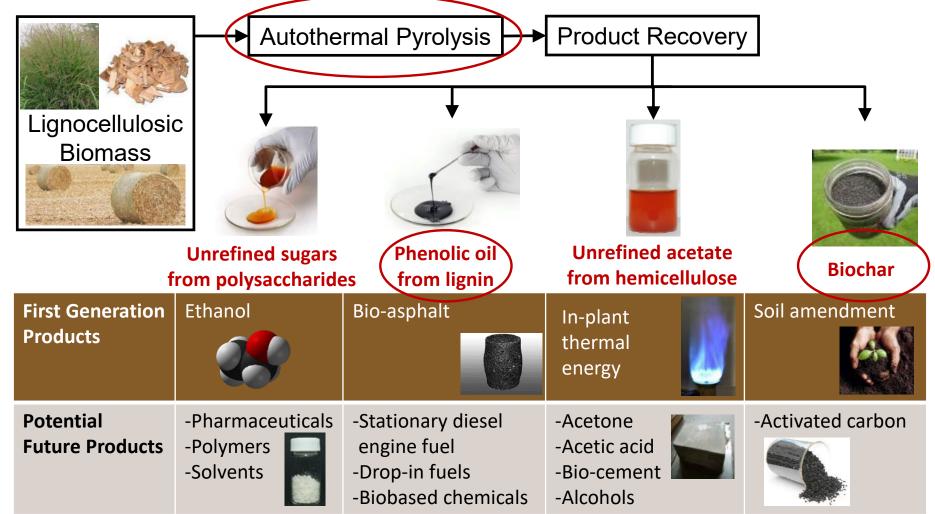
Lysle Whitmer, Ryan G. Smith, Robert C. Brown Iowa State University Joseph Polin Frontline BioEnergy LLC TCBiomass 2022 Denver, CO

April 19-21, 2022

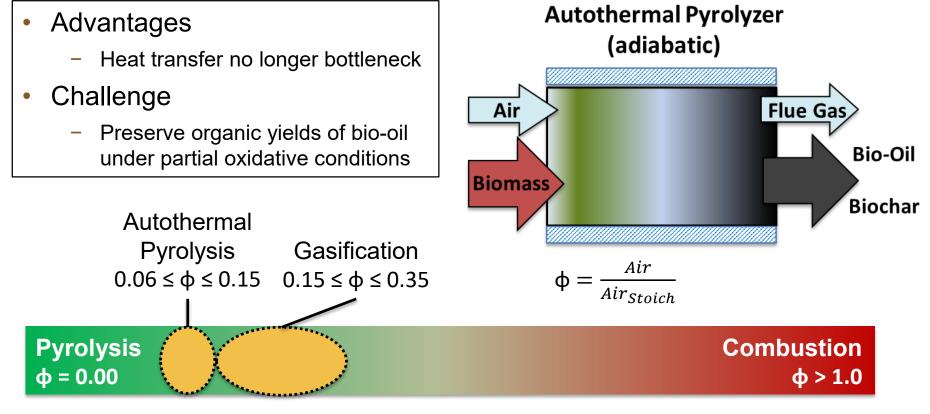
Autothermal pyrolysis technology is emerging from the laboratory to demonstration-scale

Iowa State University is the technology provider

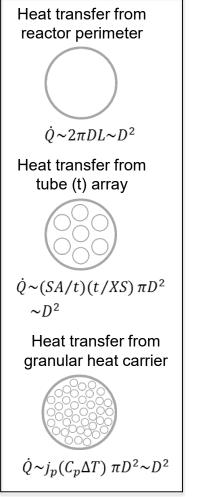
- 50 Ton Per Day Project (Redfield, IA)
 - Privately financed by Stine Seed Farms
 - Engineering, Procurement, and Construction provided by Frontline Bioenergy
 - Conversion of corn stover into phenolic oil and biochar



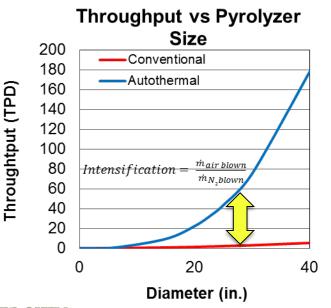
IOWA STATE UNIVERSITY Bioeconomy Institute



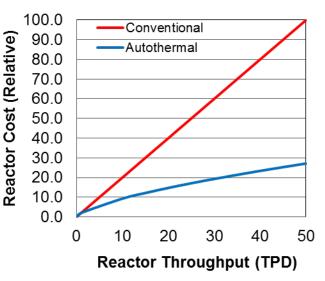
Py refinery: Producing fuels and chemicals from lignocellulosic biomass


Enabling Technology: Autothermal Pyrolysis

Part of the biomass and/or pyrolysis products are oxidized to provide energy for endothermic pyrolysis reactions

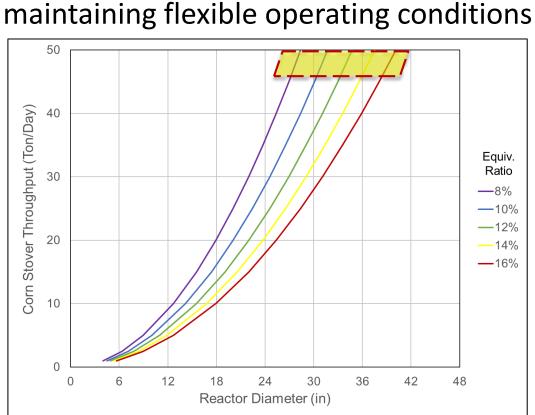


IOWA STATE UNIVERSITY Bioeconomy Institute


Process Intensification: Breaking the heat transfer bottleneck in pyrolysis

- Energy demand for an endothermic reaction is provided by energy release from an exothermic reaction
- Heat transfer scales as square of reactor diameter while energy demand for pyrolysis scales as cube of reactor diameter
- Providing enthalpy of pyrolysis through partial oxidation of products (autothermal pyrolysis) reduces size and cost of pyrolyzer compared to a heat transfer-limited reactor

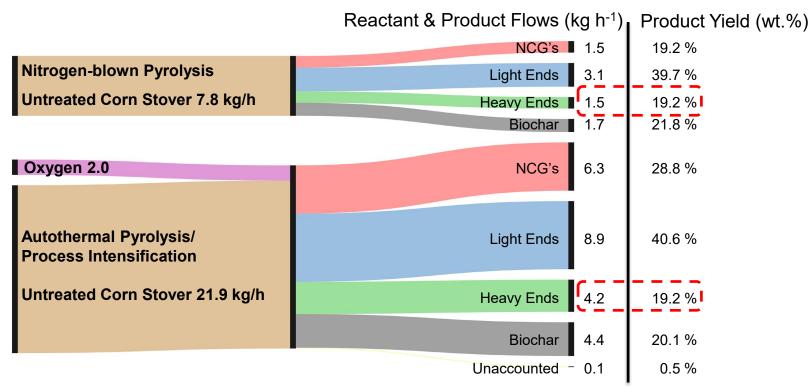
Relative Cost of Pyrolyzer


Scaling up Autothermal Pyrolysis to a **Demonstration Unit**

Demo

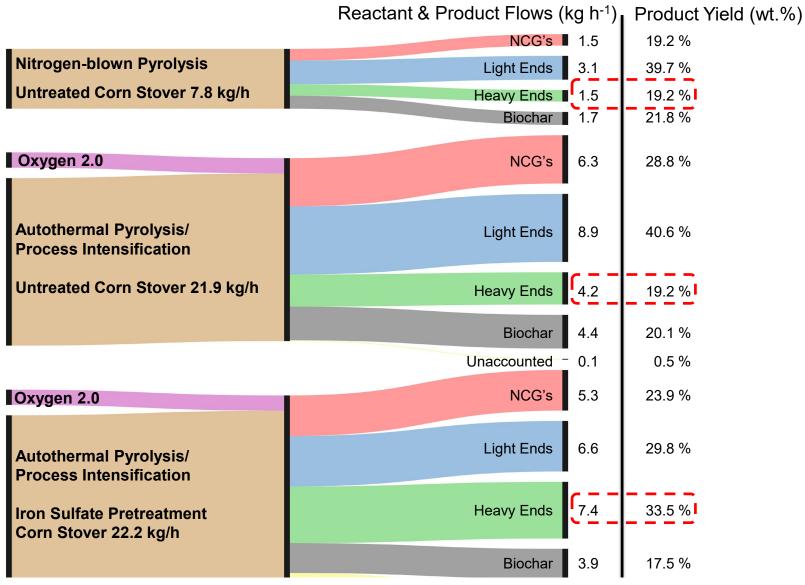
6

1



Estimating reactor size while

Pilot



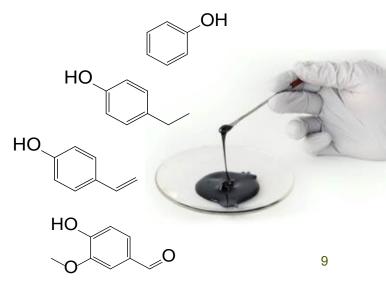
Process Intensification in Corn Stover Pyrolysis

Polin, et al. (2019) Conventional and autothermal pyrolysis of corn stover: Overcoming the processing challenges of high-ash agricultural residues, Journal of Applied and Analytical Pyrolysis 143, 104679.

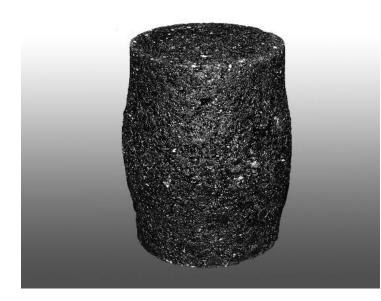
Sugar Production from Corn Stover Pyrolysis

Polin, et al. (2019) Conventional and autothermal pyrolysis of corn stover: Overcoming the processing challenges of high-ash agricultural residues, Journal of Applied and Analytical Pyrolysis 143, 104679.

Phenolic oil


- Product of the fast pyrolysis of woody or herbaceous biomass
- Derived from the lignin in biomass
- Heating value is much higher than whole bio-oil
- Contains both phenolic monomers and oligomers
- Challenge: High viscosity and instability in storage and under heating

Examples of phenolic monomers found in phenolic oil


Lignin in its natural habitat

Exploiting the challenges of phenolic oil: Turn it into bio-asphalt

Paving Des Moines bicycle path (2010)

Test sample of bio-asphalt from red oak

Still in use today (2020)

Successful formulations of bio-asphalt binder blends using phenolic oil

- Phenolic oil (PO) heated at 110°C to drive off moisture
- Blend of 90% PO and 10% ground recycled tire rubber heated at 120°C for 1 hr
- PO and tire rubber blend mixed with PG 58-28 asphalt binder

Performance Grade Minimum pavement design temperature (°C)*

Average 7-day maximum design temperature (°C)

PG58-28 Asphalt Binder	Phenolic Oil	Ground Tire Rubber	PG High (°C)	PG Low (°C)	AASHTO Rated Performance Grade
100% (control)	0%	0%	60.4	-30.4	P 58-28
90%	9%	1%	60.5	-28.5	P 58-28
80%	18%	2%	61.9	-27.9	P 58-22
70%	27%	3%	72.5	-27.7	P 70-22

IOWA STATE UNIVERSITY Bioeconomy Institute

* Minimum temperature is negative degrees Centigrade ¹¹

Biochar as a Soil Amendment

- Biochar has several benefits for soil
 - Enables moisture management in various soil types
 - Returns much of the inorganic content of biomass to the soil
 - Enhances beneficial microbial activity
 - Can be used to adjust soil pH
 - Carbon sequestration agent
 - Work in progress to formulate as slow- release P and N fertilizer
- Tests confirm that biochar from auto-thermal pyrolysis has no negative effects on seed germination
- Preliminary plot studies have shown benefits
- Market value is challenging to determine

Biochar from fast pyrolysis is dusty

Granulated biochar improves storage and field application

IOWA STATE UNIVERSITY Bioeconomy Institute

Biochar for Carbon Removal

- Stine Pyrolyzer expected to sequester 4000 tons CO₂ equivalent per year from pyrolysis of 50 tons of corn stover into biochar as carbon sequestration agent
- Carbon XPRIZE grand prize, sponsored by Elon Musk, requires 1000 tons of CO₂ removed and durably stored within one year
- "Phase 1 Milestone Prize" application submitted

IOWA STATE UNIVERSITY Bioeconomy Institute

PHASE Awarded

× PRIZE

XPRIZE CARBON nrg[®] cosia

Techno-Economic Analysis

- Previous pyrolysis AspenPlus and AspenHYSYS models modified to reflect changes in equipment, yields and assumptions due to autothermal operation, biomass pretreatments, and modular manufacturing
- GREET, SimaPro and EcoInvent used for GHG emission analysis
- Plant capacity is 250 tpd corn stover
- Nominal Minimum Sugar Selling Price (MSSP) is estimated to be \$218
- Carbon removal rate estimated to be 0.32kg of C/kg of C in the biomass
- Due to lower pretreatment requirements and higher product yields, modular autothermal pyrolysis biorefinery using wood biomass will have higher profitability than corn stover used in this analysis

Assumptions on	Product Value and Yield
----------------	-------------------------

Product	Value (\$/tonne)	Yield (kg/kg corn stover)*
Sugars	327	0.118
Phenolic Oil	500	0.181
Biochar	80	0.14

*Moisture free basis

IOWA STATE UNIVERSITY Bioeconomy Institute

Operating Cost Assumptions (Nominal)

Material/ Energy	Price	
Corn Stover	\$41/tonne*	
Natural Gas	\$5.68/MMBtu	
Ferrous Sulfate	\$550/tonne	
Process Water	\$0.20/tonne	
Electricity	\$0.067/kWhr	

*Sesmero et al. (2015) *J. Ag and Resource Econ.* 40(3):425-441

Demonstration Plant: 3D Solid Model

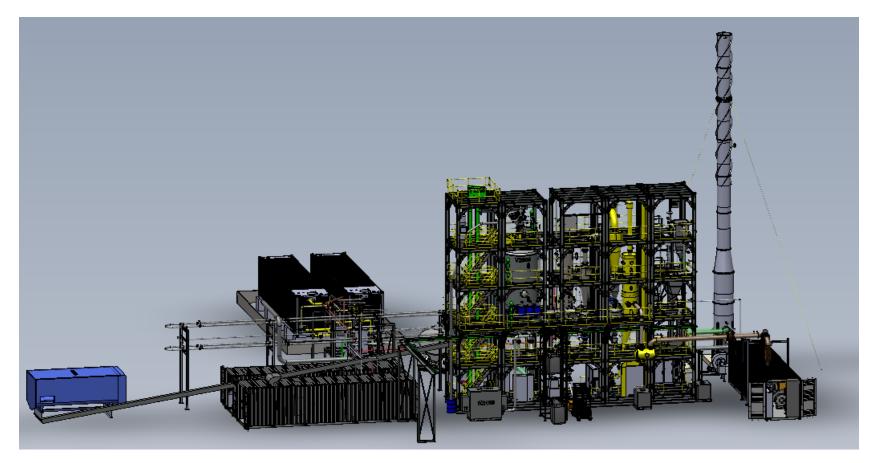
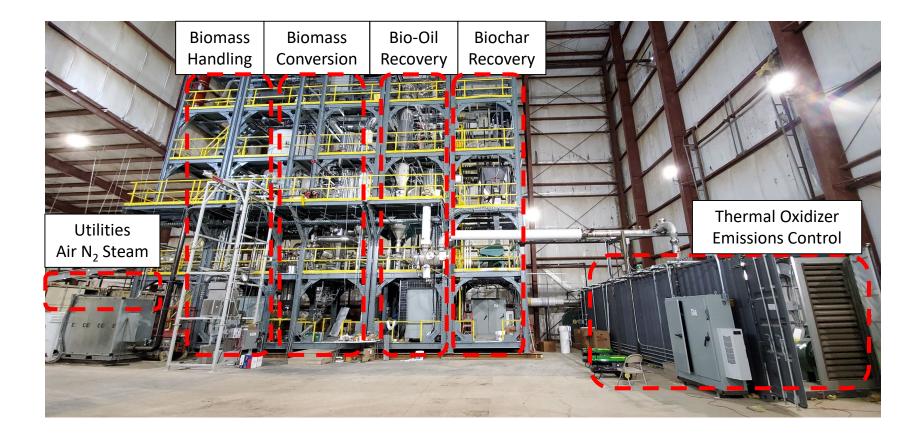


Image courtesy of Frontline Bioenergy

Modular Construction

IOWA STATE UNIVERSITY Bioeconomy Institute

Modular Transportation


IOWA STATE UNIVERSITY Bioeconomy Institute

Modular Transportation

IOWA STATE UNIVERSITY Bioeconomy Institute

Onsite Construction Overall System View

Onsite Construction Outdoor Equipment

For more information :

BEI Webpage: http://www.biorenew.iastate.edu/

Lysle Whitmer – Sr. Research Engineer, BEI Phone: 515-296-6309 E-mail: lwhitmer@iastate.edu

Joseph Polin – Frontline BioEnergy, LLC Phone: 515-292-1200 x109 E-mail: jpolin@frontlinebioenergy.com

