

Blending of Hydrothermal Liquefaction Biocrude with Residual Marine Fuel: an Experimental Assessment

Arturo Di Fraia¹ Andrea Maria Rizzo ^{1,2} and David Chiaramonti ^{1,3}

¹ Renewable Energy Consortium for Research and Demonstration – RE-CORD, Viale Kennedy 184, 50038 Scarperia, Florence, Italy.

² DIEF, University of Florence, Department of Industrial Engineering, Viale Morgagni 40/44, Florence 50139, Italy

³ Department of Energy "Galileo Ferraris", Polytechnic of Turin, I-10129 Torino, Italy

TCBiomass 2022 | Denver, Colorado | April 19-21, 2022

Summary

2. Materials and methods

3. Results

4. Conclusion and future works

- Global and EU marine fuel market
- Current regulation and prospects
- EU sewage sludge management
- Sewage sludge characterization
- RE-CORD HTL experiments with sewage sludge
- HTL products separation
- Blending tests
- Analytical characterization
- Blend compliance with ISO 8217:2017

Background information - Global and EU marine fuel market

Global maritime transport*

- 80% of global trade
- 6.1% of global oil demand
- 11 000 million of tons loaded

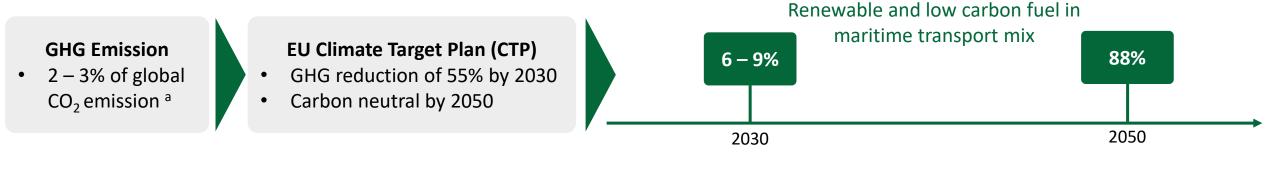
EU maritime transport^{a,b}

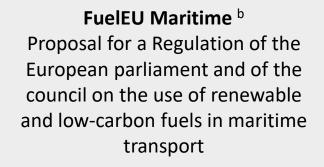
- 35% of internal trades
- 75% of external trades
- 400 million passengers

marine fuels

43.6 million ton/y of marine fuels

400 million ton/year of


50 000 merchant ships


*Concawe, "Marine fuel facts", Environmental Science for the European Refining Industry, 2017

^a Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the use of renewable and low-carbon fuels in maritime transport and amending Directive 2009/16/EC

^b EUROSTAT Passengers embarked and disembarked in all ports by direction - annual data (2021)

Background information - Current regulation and prospects

- Obligation to use on-shore power supply or zero emission technology in ports under jurisdiction of a Member State
- Limit on yearly average greenhouse gas intensity of the energy used on-board by a ship during reporting period

* Concawe, "Marine fuel facts", Environmental Science for the European Refining Industry, 2017

** except for ship with sulphur abatement methods

^a IEA Bioenergy, "Biofuels for the marine shipping sector: An overview and analysis of sector infrastructure, fuel technologies and regulations", 2017 ^b Directive 2009/16/EC

ISO 8217:2017

Distillate marine fuel

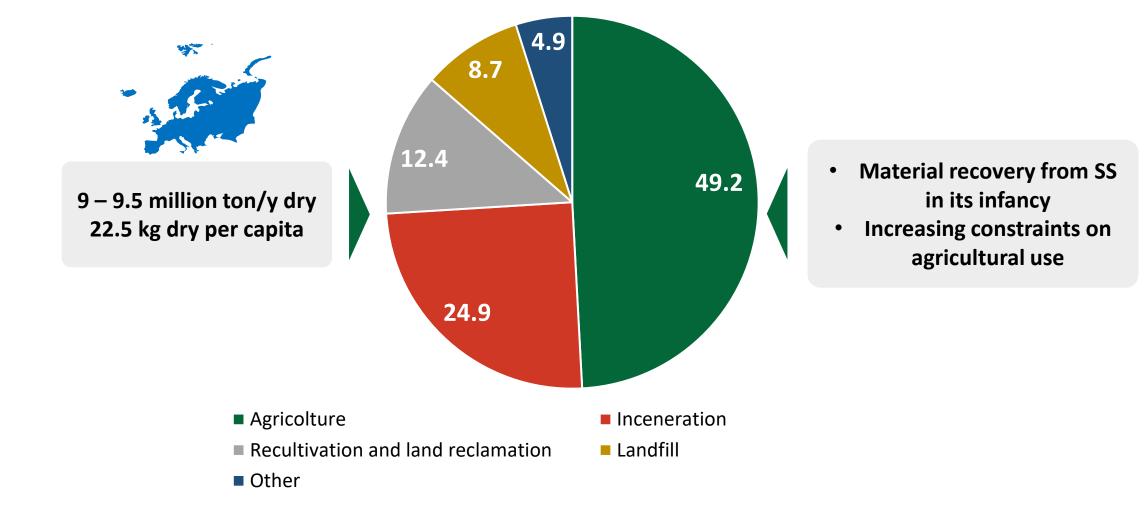
- Marine gas oil (MGO)
- Smaller and medium high speed units
- Lighter fraction of crude
- Seven grades (DMX, DMA, DFA, DMZ, DFZ, DMB, DFB)

20 – 30% of total marine fuel demand^a

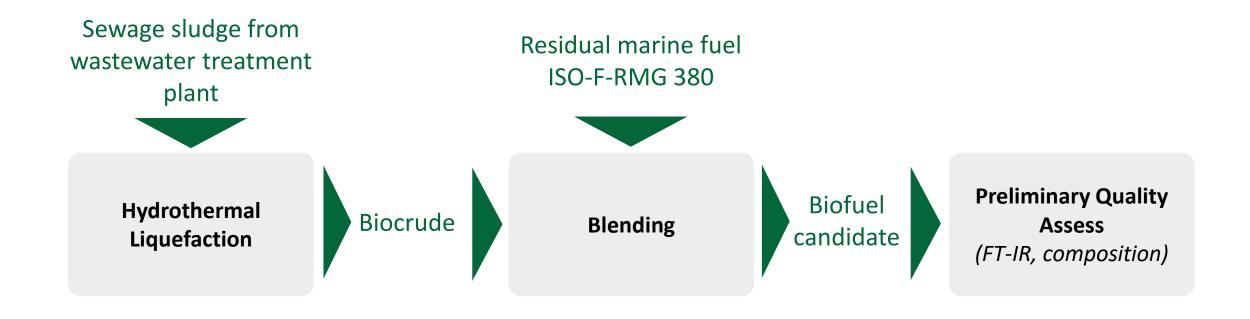
Average price (2019) 647 \$/ton*

Residual marine fuel

- Heavy fuel oil (HFO)
- Residue of the distillation
 process
- Six grades (RMA, RMB, RMD, RME, RMG, RMK)


70 – 80% of total marine fuel demand^a

Average price (2019) 420 \$/ton*


* average price of 2019 global Top 20 port "IMO 2020 What Every Shipper Needs To Know" (2019) ^a Concawe, "Marine fuel facts", Environmental Science for the European Refining Industry, 2017

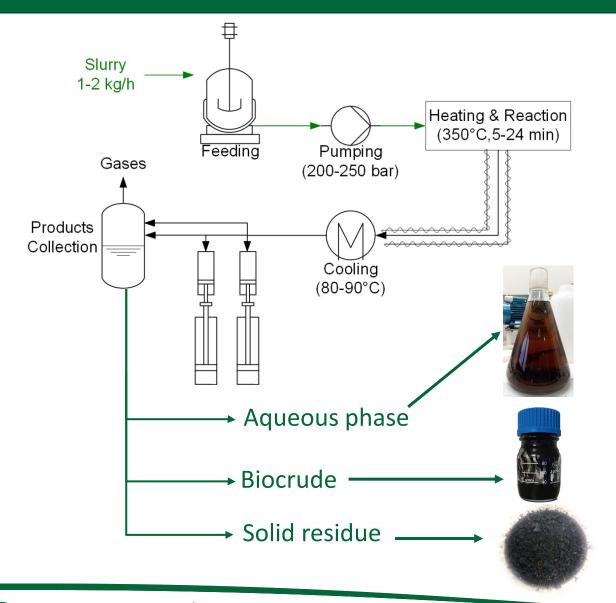
Background information - EU sewage sludge management

RE-CORD tcbi

*data from Wareg - European Water Regulators, "Sludge management in the EU, following a circular economy approach", 2019

Materials and methods - Sewage sludge characterization

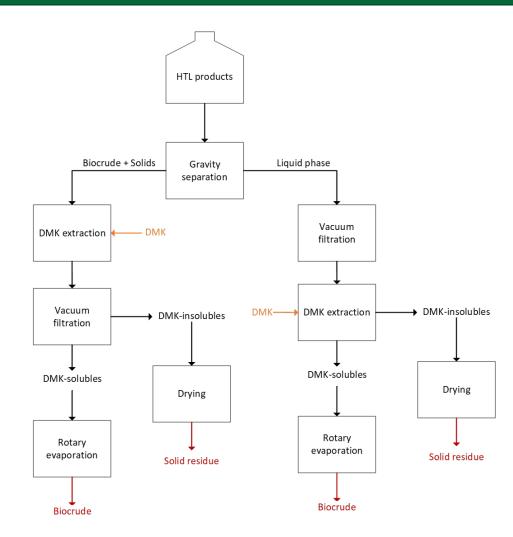
	Value
Moisture (wt.% w.b.)	71.1
Ash (wt.% d.b.)	19.8
Volatile matter (wt.% d.b.)	71.2
Fixed carbon (wt.% d.b.)	9.0
C (wt.% d.b.)	45.9
H (wt.% d.b.)	6.5
N (wt.% d.b.)	4.3
S (wt.% d.b.)	0.6
O (wt.% d.b.)	22.9


* Channiwala, S. A., Parikh, P. P. «A unified correlation for estimating HHV of solid, liquid and gaseous fuels»

RE-CORD tcbi

	Value
Si (mg/kg) d.b.	11996
Ca (mg/kg) d.b.	11066
Al (mg/kg) d.b.	7794
Fe (mg/kg) d.b.	5583
P (mg/kg) d.b.	5398
K (mg/kg) d.b.	2754
Mg (mg/kg) d.b.	2333
Ti (mg/kg) d.b.	769
Zn (mg/kg) d.b.	545
Na (mg/kg) d.b.	219
Ba (mg/kg) d.b.	194
Cu (mg/kg) d.b.	154

Value


Materials and methods - RE-CORD HTL experiments with sewage sludge

	Value	U.M.
Temperature	350	°C
Pressure	20	MPa
Residence time (RT)	5 – 20	min
Biomass-to-water ratio (B/W)	10	wt.%

Materials and methods - HTL products separation

	Value	U.M.
Temperature	350	°C
Pressure	20	MPa
Residence time (RT)	5 – 20	min
Biomass-to-water ratio (B/W)	10	wt.%

Materials and methods - Blending tests

	Marine fuel		
	ISO-F-RMG-380	Biocrude	U.M.
C	87.1 (0.36)	75.7 (0.38)	wt.%
Н	12.1 (0.16)	9.1 (0.04)	wt.%
Ν	0.2 (0.02)	4.6 (0.03)	wt.%
0	<0.5	10.1 (0.56)	wt.%
S	0.38 ^a	0.98 (0.01)	wt.%
Vanadium	6 ^a	1 (0.05)	mg/kg
Sodium	1 ^a	36 (0.25)	mg/kg

Blending Blending U.M. test A test **B Biocrude nominal content** 10 20 wt.% Marine fuel ISO-RMG-380 Biocrude **Blend** Heating Mixing 70 °C

Absolute standard deviations in brackets.

^a provided by the supplier;

n.a. = not analysed

Results – Analytical characterization

Sample	C wt.%	H wt.%	N wt.%	0 wt.%	S wt.%
SS biocrude	75.7 (0.4) ^A	9.1 (0.04) ^B	4.6 (0.03) ^A	10.1 (0.6)	0.98 (0.01)
Marine fuel	87.1 (0.4) ^a	12.1 (0.2) ^a	0.2 (0.02) ^c	<0.5	0.38
Blend A	86.0 (0.1) ^b	12.0 (0.1) ^a	0.5 (0.08) ^b 1	<0.5	0.47 (0.005)
Blend B	85.2 (0.3) ^b	12.0 (0.1) ^a	0.79 (0.04) ^a	0.9 (0.09)	n.d.
Blend B residue	77.3 (1.1) ^A	9.6 (0.2) ^A	3.6 (0.1) ^B	n.d.	n.d.

In bracket standard deviation. Statistically significant differences (p < 0.01) between mean values are shown with distinct letters. Capital letters (A,B) indicate statistically significant differences between SS biocrude and Blend B residue, lower-case letters (a,b,c) indicate statistically-significant differences between MF, Blend A and Blend B. Actual presence of biocrude in blends confirmed by:

- Decrease of carbon content and increase in nitrogen content, compared to MF, in both blends (A and B)
- ANOVA analysis (99% confidence level): statistically-significant differences (p-value ≤ 0.01) between the values of carbon and nitrogen content of Blend A and MF

 Complete dissolution for blend A (10 wt% SS BC nominal content)

 Incomplete dissolution for Blend B (20 wt% SS BC nominal content) . Carbon concentration suggests a content of 16 wt.% of biocrude (Blend B)

Nitrogen concentration suggests a content of 14 wt.% of biocrude (Blend B)

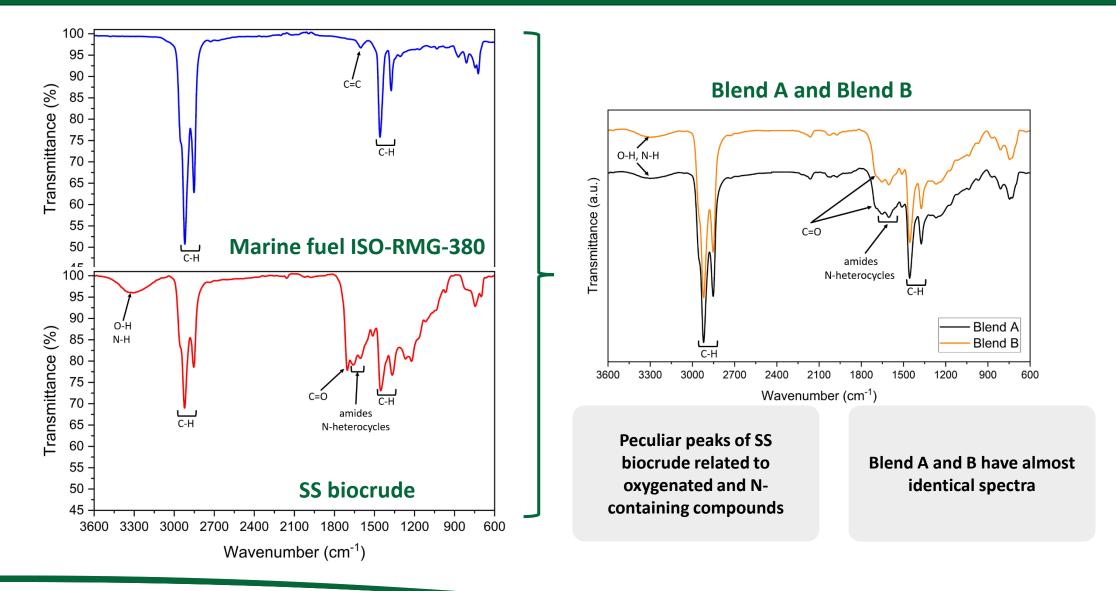
Blending limit of biocrude in marine fuel

14 – 16 wt.%

Sample	Fe (ppm)	Ca (ppm)	P (ppm)	K (ppm)	Si (ppm)	Al (ppm)
SS biocrude	716 (4)	202 (2)	196 (11)	106 (2)	90 (0.5)	41 (0.3)
Marine fuel	u.d.l.	u.d.l.	u.c.l.	u.d.l.	u.d.l.	u.d.l.
Blend A	54 (3)	27 (2)	u.c.l.	u.d.l.	14 (0.7)	9 (0.05)
Blend B	75 (0.5)	16 (2)	u.c.l	u.d.l.	u.d.l.	9 (0.1)
Blend B–residue	1048 (16)	720 (10)	531 (17)	379 (5)	232 (1)	209 (0.5)

u.c.l. = under calibration limit; u.d.l. = under detection limit; absolute standard deviation in brackets

Negligible inorganic content in MF


 Increase concentration of inorganic elements in Blend A and B comparable and unrelated to the concentration of BC

Solubility limit for each element

Blend B residue:

- Higher concentration of inorganics than initial biocrude
- Biocrude organics have better solubility in MF than inorganics

Results – Analytical characterization

Results - Compliance with ISO 8217 of Blend A

Shortlist of properties being considered:

- Total acid number (TAN): indication of amount of acidic compounds that could cause accelerated damage to engine, in particular in fuel injection equipment
- Ash: the formation of solid particles in the engine could cause damage to components (piston crowns, exhaust valves, turbocharger etc.)
- Sodium and vanadium content: higher content in ash reduces the melting temperature and these fluid ashes can adhere to the combustion chamber surface
- Sulphur content: high concentration in fuel increases the sulphur oxides emission
- Aluminium plus silicon: indication of catalytic fines in marine fuel oil; the limit of ISO 8217 ensures that the fuel treatments plants onboard
 reduces the catalyst fines to an acceptable level at engine inlet

	ISO-RMG-380	Limits from ISO 8217	Limit of IMO** and CIMAC ^a	Blend A	U.M.	
TAN	0.32*	<2.5		1.43	KOH/g	Blend A falls in ISO 8217 limit
Vanadium	6*	<350	<150	u.d.l.	mg/kg	 TAN Sodium and vanadium
Sodium	1*	<100		u.d.l.	mg/kg	content
Sulphur	0.38*	<0.5	<0.5	0.47 (0.005)	wt.%	Sulphur contentAluminium plus silicon
Ash	0.005*	<0.1		0.137 (0.05)	wt.%	X
Aluminium plus silicon	6	<60		23	mg/kg	Ash content slightly above the limit → use of RMK grade instead!

* provided by the supplier; ^a International council con Combustion Engine; ** International Maritime Organization;

u.d.l. = under detection limit; in brackets absolute standard deviation

Conclusions and future works

- Analyses confirm the incorporation of biocrude aliquot in residual marine fuel:
 - Blend A and B shows identical FT-IR spectra
 - Peculiar peaks of SS biocrude related to oxygenated and Ncontaining compounds
- Blend A (10 wt.% nominal biocrude concentration) met basic analysed quality parameters of ISO 8217 for grade ISO-F-RMG 380:
 - o TAN
 - Sodium and vanadium content
 - Sulphur content
 - Aluminium plus silicon

RE-CORD tcbi

- The formation of agglomerates in Blend B (20 wt.% biocrude nominal concentration) suggest an incomplete blending of biocrude in the marine fuel.
- Inorganics tend to accumulate into the undissolved fraction (residue).

Direct blend of SS biocrude with residual marine fuel (ISO-F-RMG 380) without prior upgrading might provide a low-cost pathway for the inclusion of biogenic carbon

Blending limit of this specific SS biocrude in residual marine fuel between 14 – 16 wt.%

Conclusions and future works

Selective pre-treatments to reduce inorganics

content in SS briocrude

- Determination of limiting parameter(s) for SS
 - biocrude blending in residual marine fuel
- Scale-up of blending test with larger quantity of

biocrude different grades of residual marine fuel

Thanks for your attention!

The presented work is published in the OA paper:

Rizzo A.M. and Chiaramonti D., Energies, 2022, 15(2), 450. https://doi.org/10.3390/en15020450

Arturo Di Fraia¹ Andrea Maria Rizzo ^{1,2} and David Chiaramonti ^{1,3}

¹ Renewable Energy Consortium for Research and Demonstration – RE-CORD, Viale Kennedy 184, 50038 Scarperia, Florence, Italy.
 ² DIEF, University of Florence, Department of Industrial Engineering, Viale Morgagni 40/44, Florence 50139, Italy

³ Department of Energy "Galileo Ferraris", Polytechnic of Turin, I-10129 Torino, Italy

