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Overview

Target Outcome: 
Accelerate pathways for the production of distillate-range fuels 

via catalytic pyrolysis and hydroprocessing

Forest 
Resources and 
Woody Wastes

133 Million 
Dry Tons/Yr

8 BGPY
Hydrocarbon 

Fuel

Sanderson, K., Nature, 2011, 474, S12-S14
2030 Estimates for DOE Billion Ton Report
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Previous Research
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Approaches to CFP have utilized several different catalysts, 
conditions, and reactor configurations

In Situ Ex Situ Moving Bed Ex Situ Fixed Bed

Co-fed hydrogen can increase carbon yield and 
reduce bio-oil oxygen content

Low Capex 
Requirements Controlled Upgrading Environment

Greater Diversity of 
Accessible Catalyst and 

Chemistries

Harsh Upgrading 
Environment Higher Capex Required Longer Catalyst Lifetime 

Required

K. Wang, et al., Green Chem., 19, 2017

This research was performed using co-
fed hydrogen at atmospheric pressure

No H2

H2 
Atm

H2 
Pressure
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Feedstocks and Reaction Conditions

4

Standard Conditions
Feedstock: Loblolly Pine + Forest Residues
Pyrolysis Temperature: 500 °C
Upgrading Temperature: 435 °C

Forest Residues
Harvest waste

Clean Pine
Debarked stem-wood

Catalyst Mass: 100 g
WHSV: 1.4 g biomass/gcat*h
Pressure: ~1 Bar 
Hydrogen Concentration: 83%

Feedstock 50/50 Forest Residues + 
Clean Pine 

Composition Dry wt%
Carbon 50.51
Hydrogen 5.99
Nitrogen 0.17
Sulfur 0.03
Oxygen 41.55
Ash 0.77 
Modelled Cost $67/dry ton
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Catalyst Characterization
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Catalyst and Synthesis 
Method

0.5%Pt/TiO2

Strong Electrostatic 
Adsorption

Support 0.5 mm TiO2 Spheres 
(mixed phase)

Modelled Catalyst cost $203/kg 
Support acidity, NH3-TPD, 
µmol/g

156

Support surface area, m2/g 54
Support pore volume, 
cm3/g

0.37

Support median pore 
diameter, Å

328

Catalyst CO binding site 
density (µmol/g)

19

SEM of 0.5 mm TiO2 support

X-Ray Diffraction

Physisorption
Pt Particle Size Distribution (nm)Lin, F., et al. ACS Catal. 2022, 12, 1, 465-480

Griffin, M., et al. ACS Catal. 2016, 6, 2715-2727
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CFP Reaction Testing Results
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Process 
Data

Standard 
Deviation

Carbon Balances (%) 99 1.5%
Mass Balance 102 0.6%

Process Yields (wt. % of dry biomass unless noted)
Non-Condensable Gases 30 2.4%
Aqueous Phase (% of biomass C) 1.7 2.3%
Char 11 0.2%

Coke 2 0.5%

Organic
Phase

Mass Yield 25 1.3%
H/C Molar Ratio 1.3 -
Carbon Yield (%) 36 1.3%
Oxygen Content
(wt% of organic, dry
basis)

16.5 0.9%

Carbon Yield to Condensable Light Oxygenates 13 0.2%

Related Posters/Presentations
Kristiina Iisa: Hydrotreating to SAF, W-11:15am Calvin Mukarakate: Advancements in CFP, Poster
Kristiina Iisa: Co-Hydrotreating with SRD, Th-2:00pm Abhijit Dutta: TEA/LCA, Poster

High Quality Cycloalkane-Rich 
SAF Product

Co-Hydroprocessing with 
Straight Run Diesel
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Post-Reaction Catalyst Characterization
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Bed Segments: 16 
Reaction Cycles: 13

Total TOS: 49 h
Total Biomass Fed: 7.4 kg

Cululative B:C: 74

Post Reaction Characterization Revealed Potassium Accumulation 
Concentrated at the Leading Edge of the Catalyst Bed

Dark field STEM-EDS From Leading Edge of BedICP-OES of Segmented Catalyst Bed
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Preparation of Potassium-Doped Catalysts

8

Sample
K loading

ppm μmol gcat.
-1

PT100K 168 4.3
PT800K 774 19.8
PT2000K 1613 41.4
PT4000K 3418 87.6
PT6000K 5757 118

A series of K-doped catalysts were prepared 
with KNO3 to achieve K loadings between 

100-6000 ppm. 

XRD and physisorption reveal no apparent impact of K-
loading on crystallinity, surface area, or porosity

STEM EDS indicates K is well 
dispersed, consistent with 

post-reaction catalysts from 
experiments with whole 

biomass feedstocks

Collaboration with Enabling Projects
Catalyst Deactivation Mitigation

Advanced Catalyst Synthesis and Characterization 

Lin, F., et al. ACS Catal. 2022, 12, 1, 465-480
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Impact of Potassium on Metal Sites
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Metal Site Titrations by CO ChemisorptionParticle Size Distribution by TEM

Potassium deposition had minimal impact on Pt 
particle size distribution

No apparent correlation between CO uptake 
and K loading

Lin, F., et al. ACS Catal. 2022, 12, 1, 465-480
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Impact of Potassium on Acid Sites
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Pyridine TPD reveals a reduction in acid site density and peak 
desorption temperature with increasing potassium loading

Acid Site Titrations by 
Pyridine TPD

Correlation Between Potassium 
Loading and Acid Site Density

Acid Site Identification by 
Pyridine DRIFTS

All catalysts exhibited 
exclusively Lewis acidity

Lin, F., et al. ACS Catal. 2022, 12, 1, 465-480
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Impact of K on Activity of TiO2 Acid Sites
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> 2000 ppm K
No apparent impact of further K
addition

0-2000 ppm K
Decrease in rate and increase in
apparent activation energy with
increasing K-loading

Lin, F., et al. ACS Catal. 2022, 12, 1, 465-480

t-Butyl Alcohol Dehydration
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Impact of K on Activity Near Pt-TiO2 Interface
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0-2000 ppm K
Minimal impact from K addition

> 2000 ppm K
Linear decrease in rate with K addition

Lin, F., et al. ACS Catal. 2022, 12, 1, 465-480

m-Cresol Hydrodeoxygenation
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Proposed Mechanism
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High Coverage: Potassium begins to 
impact bifunctional sites at the metal-
support interface. Metal sites remain 
largely unaffected.

Lin, F., et al. ACS Catal. 2022, 12, 1, 465-480

Low Coverage: Potassium 
preferentially poisons strong acid sites 
on the support.
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Mitigation Strategy
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Lin, F., et al. ACS Catal. 2022, 12, 1, 465-480

Pyridine TPD IPA  Dehydration m-Cresol HDO

Sample K loading
ppm μmol gcat.

-1

PT100K 168 4.3
PT6000K 5757 118
PT6000K-W 337 8.6

An ex-situ water wash was demonstrated to be an
effective regeneration procedure for removing
potassium and restoring catalyst activity
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