IOWA STATE UNIVERSITY Bioeconomy Institute

Thermal Oxo-degradation as an Alternative to Thermal Depolymerization of Plastics Jessica L. Brown, Tannon J. Daugaard, Chad A. Peterson, Patrick Johnston Ryan G. Smith, Robert C. Brown Apr. 21 – TCBiomass 2022

Conventional fast pyrolysis of plastic

- **Definition of pyrolysis**: "Thermal decomposition of organic compounds in the absence of oxygen."
 - Biorenewable Resources: Engineering New Products from Agriculture
- Products of plastic pyrolysis: "Wax, liquid, non-condensable gases, char"
 - Feedstock Recycling and Pyrolysis of Waste Plastics
- Advantages: "Convert plastic into lower molecular weight products to be used as fuels or feedstock for new chemicals"
 - A Circular Solution to Plastic Waste

Challenges of plastic pyrolysis

- Large thermal requirements
- Long reaction times
- Low selectivity

Random scission of carbon backbone of polymers is endothermic

Reducing the timescale of natural degradation of plastics in the environment

- Challenge: Rapidly deconstruct plastic to oxygenated product at high yields while employing less energy than conventional pyrolysis
- Innovation: Apply concepts of autothermal pyrolysis to the thermal decomposition of plastics

Thermal oxo-degradation is combined cracking and oxidation of polymers

Mechanism of thermal oxo-degradation (TOD)

- Combined cracking and oxidation of polymers
- Free-radical mechanism which is initiated by heat or light

Rate of devolatilization increases with oxygen concentration

 Introducing small amounts of oxygen into heated atmosphere improves kinetics of devolatilization of plastic

Data generated from introducing HDPE into TGA held isothermally at 500°C

Thermal oxo-degradation in a fluidized bed reactor

Plastic is fed at 750g/hr into fluidized bed reactor as 2, 2100W clamshell heaters supply heat for devolatilization

Energy is released during exothermic partial oxidation reactions at 600°C, leading to decrease in external heat needed for devolatilization

Comparison of TOD and pyrolysis products

Effect of pyrolysis and thermal oxo-degradation on product distribution of polyethylene (HDPE)

Wax product from thermal oxo-degradation

Liquid product from thermal oxo-degradation

Factors affecting thermal oxo-degradation products

• Temperature

Air

Air_{Stoich}

- Vapor residence time
- Oxygen concentration

Pyrolysis

φ = 0.00

Thermal oxo-

degradation

 $0.01 \le \varphi \le 0.2$

Equivalence ratio

Product from thermal oxodegradation can be biologically funneled to specific biochemical products

Thermal oxo-degradation as precursor to biochemical conversion

Single-cell protein produced from yeast grown on TOD

Commercially available yeast products

Next steps

Performing technoeconomic analysis on TOD to prove commercial value

Determining reaction conditions which enhance microbial growth on TOD products

Deriving TOD kinetics with various feedstocks

Acknowledgements

Bioeconomy Institute

Collaborators

Dr. Laura Jarboe Dr. Mark Blenner Efrain Rodriguez-Ocasio

Undergraduate Assistants

Celia Abolafia Maxwell Beck Jarrod Long Nathan Patel

Funding

This work was funded by DARPA Cooperative Agreement No.: HR0011-20-2-0034 and the Department of Energy through the Chemical Upcycling of Waste Plastics Consortium.