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Executive Summary
Methane, a potent greenhouse gas, can warm the atmosphere 28–86 
times as fast as carbon dioxide. Understanding how to effectively 
measure and reduce methane emissions is a top priority for 
stakeholders across the natural gas value chain, especially in light of 
net-zero commitments of governments and organizations around the 
world. To succeed, stakeholders need access to consistent and effective 
detection methods for methane emissions—especially as regulators, 
including the U.S. Environmental Protection Agency (EPA), explore 
rulemaking on various detection methods. 

EPA has released draft new source performance standards for new, restruc-
tured, and modified sources, along with guidelines for reducing methane emis-
sions from existing sources. EPA is currently seeking information to support the 
use of advanced methane detection technologies for compliance with the pro-
posed regulations. The purpose of this white paper is to provide information on 
the technological capabilities and costs of the various detection technologies 
and is based in part on a data set provided by oil and gas companies to GTI.

GTI, the Environmental Defense Fund (EDF), Highwood Emissions Management, 
and several production companies collaborated to study leak detection and 
repair (LDAR) technologies and identify information related to the efficacy of the 
various detection technologies. This study—conducted by GTI and funded by 
EDF—intends to evaluate the performance and cost effectiveness of emerging 
methane detection technologies informed in part by real-world data. It also 
aims to help provide insight into understanding limitations and difficulties with 
operationalizing these programs. 

This report summarizes the data that was generously contributed to the pro-
gram by seven different organizations, then aggregated. The data collected can 
be classified into broad categories that include handheld, mobile/vehicle based, 
aerial-based, continuous monitoring (CM), and satellite-based. During the study, 
it became clear that there were insufficient data regarding the cost of programs, 
so simulations of real-world scenarios were run to estimate cost ranges using 
LDAR-Sim. Additional simulations were deployed—namely to evaluate the effec-
tiveness of more frequent surveys. The LDAR programs detailed and simulated 
in this report represent case studies and are not immutable representations of 
any given technology or technology class. 
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Key Findings 
•	 While hundreds of data files were shared with GTI containing hundreds of thousands of data points, it is important to 

note that each technology:

	– Operates according to very different sensing principles,

	– Is deployed using different work practices,

	– Employs different analytics to estimate source location and emission rates, and

	– Reports different information to the end user.

There are no data-reporting standards for these technologies, so for the purposes of the study, GTI focused on 
hypothetical use cases to explore the performance of advanced methane detection technologies. 

•	 Work practices impact detection, so identical technologies deployed with different work practices can mitigate varying 
amounts of methane with differing costs. This underscores the need for data and reporting standards to streamline 
the collection, dissemination, and comparison of emissions data from different technologies.

•	 The performance of various technologies depends on the conditions under which they operate. Importantly, every 
methane detection technology resulted in emissions reductions with varying effectiveness and cost.

•	 Continuous monitoring (CM) sensors demonstrated the highest potential reduction in emissions—but cost relatively 
more in terms of mitigating methane in U.S. dollars per metric ton of mitigated carbon dioxide equivalent of fugitive 
methane ($/tCO2e).

•	 CM data has great potential for exploring long-term trends in emissions for an individual sites. However, there will be 
an initial learning curve to determine site operating parameters, to optimize sensor placement (height and orientation), 
and emissions characteristics for each site to properly operationalize data and avoid false-positive deployments.

•	 A time series or histogram of CM data shows highly variable emission rates, since the system or systems measure 
emissions across the entire site. Several conclusions can be drawn, and this type of data necessitates a follow-up 
investigation through examination of SCADA data or by ground crews at the appropriate times to locate the emission 
source. Nevertheless, this data can be very useful in avoiding major losses for the operator and averting major leaks.

•	 Aircraft-based technologies had the lowest cost per ton to mitigate emissions but were capable of mitigating the 
smallest percentage of emissions by focusing only on large, high-value sources. More sensitive technologies tend 
to be more expensive—because instrumentation must be more precise and/or because work practice requires more 
meticulous attention to smaller leaks; these mitigate more emissions but at a relatively higher cost, on average. 

•	 The research shows a varied range of emissions reduction where a sensitive CM sensor combined with aggressive 
follow-up work practices is the most effective at identifying and mitigating emissions.

As regulators and operators consider advanced methane detection technologies, the need for data and reporting 
standards should remain top of mind; without them, it is difficult to make comparisons across sites and instead require  
a site-by-site approach for measuring the effectiveness of emissions reductions and cost.
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Introduction
EPA has released draft new source performance standards for new, 
restructured, and modified sources along with guidelines for reducing methane 
and volatile organic emissions from existing sources. The proposed standards 
give owners/operators the opportunity to use advanced methane detection 
technologies to find and repair major emissions at well sites and compressor 
stations. EPA is currently seeking information to support the use of advanced 
methane detection technologies for this approach. The purpose of this white 
paper is to inform decisions on the capabilities and costs of the various 
detection methodologies and is based in part on a data set provided by oil and 
gas companies to GTI. 

Methane emission detection and quantification methodologies have advanced 
greatly since the beginning of the DOE ARPA-E Methane Observation Networks 
with Innovative Technology to Obtain Reductions (MONITOR) program in late 
2014. The MONITOR program, coupled with the increased understanding that 
more methane was possibly leaking from oil and gas operations than previous-
ly thought, sparked considerable advancement of innovation in detection and 
quantification methodologies. As such, several of these new detection plat-
forms have been deployed as more companies across the natural gas supply 
chain place a greater focus on reducing emissions. 

The deployed detection platforms can be classified into broad categories: hand-
held, mobile/vehicle-based, aerial-based, fixed/continuous monitoring (CM), 
and satellite-based. These broad categories can be further divided to be more 
representative of the types of data that are collected. For instance, the handheld 
technologies are the more traditional leak detection and repair (LDAR) technol-
ogies that satisfy current regulatory requirements and can be broken down into 
EPA Method 21 devices or EPA Optical Gas Imaging (OGI) devices. 

Mobile/vehicle-based detection systems include mobile labs and/or advanced 
mobile leak detection systems (no data in GTI database). Aerial-based tech-
niques can include both manned (fixed-wing, helicopter) and unmanned plat-
forms (drones, unmanned aerial platforms). Within the manned aerial platforms, 
there is a range of philosophies for the technologies and survey methodologies 
that, when combined, can affect survey speed and minimum detection limit 
(MDL). Some aerial technologies/methods elect to fly higher and faster and/
or use a technology with a lower sensitivity to cover more sites in a day. While 
other aerial remote sensing technologies/methodologies may fly lower and 
slower and/or use a technology with a higher sensitivity to cover fewer sites in 
a day. This white paper will focus on a spectrum of these technologies. Sever-
al technologies were represented in the GTI dataset, and were used to inform 
hypothetical technologies/methodologies to explore the tradeoff of sensitivity 
versus speed (i.e., cost per site). Other aerial technologies can use an aerial 
mass balance approach encompassing a site or area. In terms of drone technol-
ogies, current Federal Aviation Administration (FAA) regulations require that the 
drone be operated within visual line of sight (VLOS). This requirement means 
that the drone must be driven to each site that is scanned.
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Continuous monitoring (CM) is growing in popularity as it can rapidly identify 
new leaks. Some CM solutions regularly scan an entire site or use a laser 
detector to monitor a large area of the site for emissions. These systems can 
usually be deployed in smaller numbers per site. Other continuous monitors 
use “point” sensors to monitor a single location at the site. For some sensors 
to detect a leak, the emission plume must be carried via the wind to the 
location of the sensor; therefore, must be deployed in larger numbers. For the 
purposes of this paper, GTI evaluated hypothetical scenarios that were informed 
by data, qualitatively reported information, and surveyed responses from 
operators that included various ranges of quantitative information to estimate 
conservative and more aggressive monitoring approaches with respect to work 
practices. The different scenarios are described as CM_WP_1 and CM_WP_2 to 
incorporate a variety of techniques in operations, frequency of addressing leaks, 
and deployment methodologies. CM_WP_1 represents continuous monitoring 
systems that have lower startup and operating costs, but are of lower sensitivity 
and therefore require less frequent close-range follow-up. The trade-off is that 
fewer alerts lead to lower mitigation but at a lower cost because follow-up can 
be expensive. CM_WP_2 represents continuous monitoring systems that have 
higher startup and operating costs, but also more frequent mitigative activities 
at lower MDLs meaning that more overall emissions can be mitigated.

The intention of the spectrum of simulations that include varied frequencies, 
detection limits, operational practices, and technology types is to illustrate the 
variety of business practices and deployment patterns that may be required 
to operationalize various technologies. The scenarios and parameters used 
for the purposes of modeling are not representative of any currently available 
commercial technology, and are instead a representation of a potential bounds 
of CM work practices (WP).

The central factor to understanding, managing, and maximizing reductions of 
emissions is the proper deployment of all platforms and then operationalizing 
the information collected. Companies, particularly in the natural gas production 
segment, have begun deploying these technologies and compiling a wealth of 
knowledge about the emissions from their own assets. 

To begin to take advantage of the wealth of information, a collaboration has 
begun between the Gas Technology Institute, the Environmental Defense Fund, 
and several production companies. The purpose of this collaborative effort is to 
begin to publicly share information that the production companies have collect-
ed to understand what information more clearly can be gathered with these new 
technologies. Furthermore, the data provided can be used to determine limita-
tions and difficulties with operationalizing the information collected. GTI acted 
as a repository for the information and the data received has been summarized 
in this paper. It will not be published publicly due to the challenges of anonymiz-
ing the sources appropriately.  

The data and cost information discussed in this white paper can be used as 
specific case studies of the various detection methodologies available and the 
type of information that can be collected from the various platforms. In addi-
tion, the paper will describe examples of detailed modeled cost information, 
informed by the data provided by the companies, on a dollar per ton of abatable 
CO2 equivalent (CO2e) basis across the measurement platforms1. 

1	  The value used in this report for Global Warming Potential of methane (CH4) was 28.
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Collected Emissions Data
To date, seven entities have contributed data from the Permian basin to the GTI 
database, along with one small dataset from the Bakken. They are identified by 
the first seven letters of the alphabet (A through G) as shown in Table 1. The 
submitted data contained hundreds of files, however only 29 files contained 
raw or summarized data, while many of the other files contained explanatory 
information detailing the detected emissions. The files contained information 
from eight detection methodologies including two types of continuous 
monitoring systems, three types of aerial systems, a drone-based system, 
and a satellite-based system. In total, we received hundreds of thousands 
of data points, the majority of which did not contain leak indications. Table 
1 summarizes the data at a high level, detailing whether each technology 
can detect that a leak has occurred, whether it can provide guidance on the 
location of the leak, and whether it can provide an emission rate. Further, Table 
1 indicates the minimum detected emission reported in the data set with each 
technology. It is important to note that the minimum reported emission in 
Table 1 only indicates the lowest emission rate reported in that particular set of 
data. It does not indicate the technology MDLs. Also, the data does not include 
reported uncertainty for any of the reported emissions in the data.

Table 1. Summary table of data received. All data is in the Permian unless otherwise noted. 

Company
Anonymized 
Technology

Emitting Equipment 
Identified?

Lowest Reported Emission 
Rate in the Dataset (kg/hr)

A CM_1 No 0.01

A Satellite No 524.5

A Aerial_1 No 63.6

A Drone Yes N/A

B Aerial_3 Yes 2.8

B Aerial_1 Yes 27.2

B Aerial_3 Bakken Yes 53

B CM_1 No 10

B CM_3 Yes 0.2

C Aerial_3 Yes 2.8

C Aerial_1 Yes 56.8

C Aerial_2 Yes 3.2

C Drone No N/A

D Aerial_3 Yes 2.8

D CM_1 Yes 0.01

E Aerial_3 Yes 7.4

F CM_3 Yes 0.02

G CM_2 Yes N/A
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Figure 1. Qualitative Summary of the Technologies in the Data Set

The methodologies present in the GTI dataset can be evaluated qualitatively 
at a high level as shown in Figure 1. Each of the platform types has separate 
capabilities, which can evolve over time as many of the products are undergoing 
active development. The qualitative assessment shown in Figure 1 is intended 
to capture the current state of the methodologies that is in the dataset. 

Figure 1 illustrates the marked variability that exists in the characteristics of 
the data and information products derived from each of the detection method-
ologies present in the collected GTI dataset and are the targeted focus of this 
report. Each methodology operates according to very different sensing princi-
ples, is deployed using different work practices, employs different analytics to 
estimate source location and emission rates, and reports different information 
to the end user. Since work practices impact detection, this means that iden-
tical technologies deployed with different work practices can mitigate varying 
amounts of methane and differing costs. Spatial scale of measurement varies 
considerably from methodologies that can narrow in on individual pieces of 
equipment to those that only acquire a single measurement for an entire facility. 
Whether a methodology reports ‘non-detections’ is a critical piece of informa-
tion that is often unavailable and makes it difficult to determine the proportion 
of sites at which detections occur. Figure 1 highlights the need for data and re-
porting standards to streamline the collection, dissemination, and comparison 
of emissions data from the different technologies. The lack of these standards 
therefore mean that the findings of this report apply only to the hypothetical 
cases modeled.
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Summary of Collected Data
As mentioned previously, GTI has assembled a dataset containing information 
from several different detection platforms. In the following sections, we detail 
some of the ways in which the data can be used to explore the performance of 
advanced methane detection methodologies shown in Figure 2. 

Aerial Remote Sensing
Aerial remote sensing technologies vary, some generally fly at a higher altitude 
and faster speeds, therefore are focused on finding only the largest emission 
sources; others fly at lower altitudes and slower speeds so do not cover as 
much ground each day. GTI acquired both types of data, most of which repre-
sented the latter category. In all, information from 25 emission detections at 
higher altitutes were provided. Key information included with the data that was 
provided to GTI but not released publicly shows images of the sites and loca-
tions of the emissions. 

The lower altitude data was the most heavily represented aerial remote sensing 
data in the GTI collected data set with four companies providing data and two 
of those companies providing multiple data sets across years and locations. 
Figure 3 shows the distribution of emission sources across all of the data in  
the data set, revealing similarities to the other data sets with 65% of the 
emissions coming from approximately 90 of the nearly 750 emissions identified 
(12% of sites).

Figure 3. Histogram of all emission sources provided using  
low-altitude aerial remote sensing technology.

Figure 2. Methane detection 
technology ecosystem
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Figure 4. Example 
detection image provided 
along with the detection 
information shared in the 
data set

From the data received, most types of aerial technologies provide additional 
imaging of the emission sources as shown in Figure 4. The colors have been 
altered in the figure to anonymize the location. 

Continuous Monitoring
The most extensive portion of the dataset was obtained from CM methodolo-
gies due to large numbers of data points each sensor collects. These systems 
can include multiple sensors placed around the site to wait for a methane 
plume to be carried on the wind to the location of the sensor. The systems 
measure high frequency concentration data (e.g., 1 Hz) and report the data on 
an aggregated/time averaged basis, ranging between 1 and 60 minutes. The CM 
portion of the dataset contains data from three vendors.

Interpreting CM data can be nuanced due to the potential for emissions to be 
intermittent and the possibility for changing wind speeds and directions. For 
example, Figure 5 shows the distribution of emission detections for a 91-hour 
period for one site. Examining the histogram of the data shows a skewed distri-
bution of emissions at varying rates over the 91-hour period, with a few larger 
emission rate detections driving the overall emissions. However, examining the 
raw sensor data shows a slightly different potential story.

Figure 5. Emission rate histogram for a 91-hour period for a  
CM monitor at a single site

Plume
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Figure 6 shows the raw time series data of emission rate, wind speed, and 
methane concentration while for the same 91-hour period of data shown in 
Figure 5. Looking at the raw time series reveals that some interpretation is 
needed for the data collected at the site. First, all detections presented in the 
histogram in Figure 5 may be from the same source and only appear to be 
separate due to changing wind speeds and directions. Also, the raw data in 
Figure 6 does not fully identify whether the leak is persistent (continuously 
emitting, usually associated with fugitive emissions) or intermittent (starts 
and stops emitting, usually associated with the engineered emissions). 
Continuous monitoring data has great potential for exploring long-term trends 
in emissions for an individual site. However, there will be an initial learning 
curve to determine site operating parameters, to optimize sensors placement 
(height and orientation), and emissions characteristics for each site to properly 
operationalize data and avoid false-positive deployments.

Figure 6. An example time 
series of methane emission 
rate, methane concentration, 
and wind speed from a single 
CM_WP_1 monitor at one site 
over 91 hours.
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Figure 7 shows the emission rate data as a wind rose indicating the number 
of detections of emissions by wind direction. It is clear from Figure 7 that the 
emissions were more consistently measured when the winds came from the 
west and the west southwest, further highlighting the reliance of continuous 
monitoring systems on the wind to carry the emissions to a location that can be 
measured by the sensor. The wind rose also demonstrates the difficulty of lo-
cating emission sources without some form of visualization. Instead, advanced 
analytics must be used to attempt to determine the origin of the emission.

Figure 7. A wind rose showing the CM data by wind direction

The GTI dataset contains some other CM data reporting an emission rate (flux) 
measurement at two locations spanning over 6,000 hours of observation. The 
data provided to GTI does not contain wind speed and direction, only emission 
rate, but this does not mean the information would not be collected by a vendor. 
Figure 8 shows a histogram of the emission rates for 2,200 hours at one site  
in the Permian. This data needs to be viewed as a time-series, as shown in 
Figure 9, to fully interpret the histogram and what may be occurring at the site.
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Figure 8. Histogram of showing 2200 hours of CM data at a single site in the 
Permian Basin.

The emission rate data is highly variable and several possible conclusions can 
be drawn. One of those conclusions could be that the site may be experiencing 
a large intermittent emission. The transient nature of the emissions indicates 
that there is a possibility that the emission may not be found if the site is visited 
during one of the “low emission” times. Therefore, this type of data would re-
quire a follow-up investigation either through examination of SCADA data or by 
ground crews at the appropriate times to locate the emission source. 

Figure 9. Time series of 2,200 hours of data from a CM sensor in  
Permian Basin.
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Although highly variable at some sites, the following use case of the CM data 
provides an excellent example of the potential usefulness of the technology. 
This occurred when an anomalous CH4 release was detected as shown in 
Figure 10, which triggered an alert that led to mitigation. A pressure relief valve 
at a gas well site was found to be venting due to fluctuations in line pressure. A 
regulator was placed upstream that limited fluctuations and venting. During the 
release, the operator lost ~$24,000 (assuming $4/MCF) and emitted close to 
6,100 kgs of methane. If the unintended release had been allowed to continue 
during the sampling time, the operator would have lost close to $1.8 million.

Figure 10. Example of an emission detection leading mitigation with a  
CM system.
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Emissions and Cost Scenario 
Analysis—Case Studies

Methodology: LDAR Program Emissions and Cost Modeling
The case studies presented above provide compelling examples of how 
emerging methane measurement methodologies can be used to detect a 
broad range of methane sources. However, it is difficult to infer emissions 
mitigation from detection-only data because baselines are difficult to establish. 
Furthermore, cost data is difficult to come by for emerging technologies and 
may not be representative at this time because most technologies are at an 
early stage in the innovation cycle. Together, estimates of mitigation and cost 
can provide insight into the value of these new technologies in terms of their 
cost of mitigation. Most commonly, cost of mitigation is expressed in dollars 
per metric ton of carbon dioxide equivalent ($/tCO2e). Cost of mitigation 
expressed in these terms is a universal language that can be used to compare 
the returns on investment of diverse mitigation strategies.

The case studies from the previous section were used to inform engineering 
estimates on costs and detection limits in the simulations that can provide 
insight to likely mitigation scenarios. Ranges of cost estimates were estab-
lished using expert knowledge and data provided from both operators and 
solution providers. These data were then combined in the Leak Detection and 
Repair Simulator (LDAR-Sim) to estimate emissions reductions from a baseline 
scenario in the absence of LDAR and generate cost of mitigation distributions 
(Fox et al., 2021a, Fox et al., 2021b). LDAR-Sim is an open-source, agent-based 
numerical simulation tool that is used to estimate the emissions reduction 
performance and cost-effectiveness of various LDAR technologies. LDAR-Sim is 
peer-reviewed and is recognized by regulators, industry, and innovators around 
the world as a credible means of evaluating existing and emerging methane 
measurement technologies.

Results are presented in the following sections. In general, different technol-
ogies achieve a broad range of estimated mitigation performance depending 
on a combination of system sensitivity and frequency of measurement. Meth-
odologies with the lowest sensitivity (highest MDLs) tend to have a low cost 
of mitigation but may miss smaller leaks by only focusing on large, high-value 
sources. More sensitive methodologies tend to be more expensive because in-
strumentation must be more precise and because work practices require more 
meticulous attention to smaller leaks. These systems mitigate more emissions 
but tend to do so at a higher cost, on average. In general, the cost of mitigation 
observed for most emerging methodologies for the case studies presented 
in this report is strongly competitive in comparison to other opportunities for 
reducing emissions.

Case Studies

LEAK 
DETECTION 
AND 
REPAIR

14
WHITE PAPER

Evaluation of Emerging Methane Detection Methods



LDAR-Sim and technology modules
Information in the collected dataset, assembled costs, and additional general 
assumptions were used to conduct detailed cost modeling for a variety of emis-
sions and detection scenarios. The modeling conducted with LDAR-Sim was 
used to gain a deeper understanding of the costs to implement the methodolo-
gies and determine the cost of mitigating methane in terms of U.S. dollars per 
metric ton of mitigated carbon dioxide equivalent of fugitive methane ($/tCO2e). 

We use known emissions distributions (Zavala-Araiza et al., 2015; Bell et al., 
2017) to create a ‘virtual world’ case studies for testing methodologies on 
production sites (i.e., typical emitting) and compressor stations (i.e., high 
emitting) within the Barnett shale gas play and on production sites in the 
Fayetteville shale gas play (i.e., low emitting) to present a range of scenarios/
case studies. These provide a plausible range of emissions distributions for 
oil and gas facilities throughout the U.S. and would encompass the range 
of distributions in the areas of the Permian covered in the GTI data set. The 
emissions from leaks identified by Bell et al. 2017 at production sites in the 
Fayetteville region are generally smaller and we assume, illustrate a profile of 
lower-emitting facilities. The distributions identified by Zavala-Araiza et al. 2015 
for production sites and compressor stations are orders of magnitude larger 
and are generally heavier tailed due to the inclusion of more super emitters 
and generally fit leak profiles observed in the Permian (e.g., Cusworth, et al., 
2021). We assume the production site distribution represents a profile of typical 
emitting facilities and that the compressor station distribution represents a 
profile of high-emitting facilities.

Technologies outlined by GTI were used to create LDAR-Sim modules. Various 
simulations were carried out with the three emissions profiles described 
above (Barnett production sites, Barnett compressor stations, and Fayetteville 
production sites). Table 2 and Table 3 show the LDAR-Sim parameters used 
in simulations. It is important to note the difference in naming conventions 
between the general method and the full program that includes any follow up. 
For example, OGI refers to the OGI work practice while P_OGI refers to an entire 
program based only OGI. CM_WP_1 refers to the CM work practice with higher 
cost and lower MDL while P_CM_1 refers to the full program that uses the CM_
WP_1 work practice along with OGI follow-up. Default LDAR-Sim parameters 
outlined in the LDAR-Sim V2.0 User Manual were used except for emission 
distributions (see Table 3), number of simulations (40), detection method MDL, 
costs, and survey times. Costs, MDLs, and survey times were obtained through 
the dataset and by expert knowledge and represent hypothetical case studies 
specific to this report and should not be interpreted as defaults, typical values,  
or industry averages.
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LDAR technology comparison across different leak rate 
distributions with fixed survey frequency
We modeled 7 different detection programs against a baseline scenario where 
no formal LDAR is employed. Following EPA’s proposed OOOOb and OOOOc, 
all screening technologies, except for CM sensors, receive 6 annual screenings 
with OGI follow-up along with an annual OGI survey at all sites. Continuous 
monitoring sensors survey include OGI follow-up and a single annual survey at 
all sites. The OGI method receives 4 annual OGI surveys. Each varies in cost, 
MDL, and survey time per site. All, except the OGI program, are modeled as 
screening surveys that require close-range follow-up inspections to tag leaks. 
Follow-up surveys are modeled using the OGI method, which uses the same 
parameters as those in Table 3. Detailed flow charts of the process are depicted 
in Figure 25 and Figure 26 in the Appendix. We apply the programs at 500 sites 
and run 40 times for each program to stratify the results, removing variance 
from the models’ random variables, while providing more data points for deter-
mining cost of mitigation.

The outputs of LDAR-Sim provide estimates of 1) average mitigated emissions, 
2) breakdown of mitigated emission by detection method, 3) statistics of daily 
emissions, 4) cost and cost breakdown, and 5) cost mitigation of each program. 
Average mitigated emissions refer to the difference in total emissions of a leak 
in a program with no formal LDAR and in a program with formal LDAR, i.e.,  
Emit  = θleak  ×( tNone  −  tLDAR). Where Emit is the mitigated emissions, θleak is the leak 
rate, and tNone and tLDAR are the duration where the leak is active for a program 
with and without formal LDAR, respectively. Aside from uncertainties in mod-
el parameter selection, results are likely sensitive to emissions intermittency 
which has not been included in these modeled case studies.

Mobile screening and survey LDAR comparison at Barnett 
processing sites with varying survey frequencies
We then ran simulations using LDAR-Sim to compare emissions reduction 
performance at different survey frequencies (i.e., number of inspections per 
year) for mobile methods (i.e., continuous measurement is excluded from this 
analysis). Using the Barnett production leak rate distribution and the parameters 
shown in Table 2 and Table 3 we run simulations with 1, 2, 4, 6, and 12 surveys 
per year (frequency) for all mobile screening methods. The results are used to 
show the effect of changing survey frequency on emissions and are presented 
towards the end of the results section.
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Table 2. Virtual world parameter list for simulations in the Barnett and Fayetteville plays

Virtual World

Parameter Value Source

Region Barnett (B), Fayetteville (F)

Infrastructure source Production Sites (B+F), 
Compressor Stations (B) --

Sites sampled 500 --

Empirical leak distribution source Various --

Leak sampling Lognormal (kg/hr) --

F – Production: Emissions lognormal params [mu, sigma] [-2.89, 1.57] Bell et al., 2017

B – Production: Emissions lognormal params [mu, sigma] [-1.79, 2.17] Zavala-Araiza et al., 2015

B – Mid Stream: Emissions lognormal params [mu, sigma] [3.05, 1.49] Zavala-Araiza et al., 2015

Repair delay (days) 15 Expert Knowledge

LPR (leaks per day per site) 0.0065 Fox et al., 2021a

Days to natural repair 365 Expert Knowledge

Number of years 5 --

Number of simulations per program 40 --

Table 3. Technology module LDAR-Sim modeling parameters.

 Program Name: P_OGI  Program Name: P_Drone   

work practice OGI   work practice Drone  

MDL (k) 0.05 kg/
hr   MDL (k) 5.0  

(kg/hr)  

cost per survey ($) 500   cost per survey ($) 650  

upfront cost ($) 0   upfront cost ($) 0  

quantification error (%) 0   quantification error (%) 0  

survey time (min/site) 76   survey time (min/site) 76  

frequency (surveys/year) 4*   frequency (surveys/year) 6*  

max workday (hours) 8   max workday (hours) 8  

travel time (min/site) 30   travel time (min/site) 30  

number of OGI crews 3   number of OGI FU crews 1  

extra OGI surveys  
per year 0   extra OGI surveys  

per year 1  

average sites per day 4.25   average sites per day 4.25      

* Survey frequencies 1, 2, 4, 6, and 12 
are used in the section:  Mobile 
screening and survey LDAR 
comparison at Barnett processing 
sites with varying survey frequencies 
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Program Name: P_Aerial_3  Program Name: P_Aerial_2 Program Name: P_Aerial_1

work practice Aerial_3   work practice Aerial_2   work practice Aerial_1

MDL (k) 1.0  
(kg/hr)   MDL (k) 5.0  

(kg/hr)   MDL (k) 20.0  
(kg/hr)

cost per survey ($) 300   cost per survey ($) 200   cost per survey ($) 100

upfront cost ($) 0   upfront cost ($) 0   upfront cost ($) 0

quantification error (%) 0   quantification error (%) 0   quantification error (%) 0

survey time (min/site) 2   survey time (min/site) 1   survey time (min/site) 0

frequency (surveys/year) 6*   frequency (surveys/year) 6*   frequency (surveys/year) 6*

max workday (hours) 8   max workday (hours) 8   max workday (hours) 8

travel time (min/site) 1   travel time (min/site) 1   travel time (min/site) 1

number of OGI FU crews 1   number of OGI FU crews 1   number of OGI FU crews 1

extra OGI surveys  
per year 1   extra OGI surveys  

per year 1   extra OGI surveys  
per year 1

average sites per day 160   average sites per day 240   average sites per day 480

               

Program Name: P_CM_1 Program Name: P_CM_2

work practice CM_WP_1   work practice CM_WP_2      

MDL (k) 10.0  
(kg/hr)   MDL (k) 0.05  

(kg/hr)      

cost per survey ($) 10   cost per survey ($) 18      

upfront cost ($) 1000   upfront cost ($) 4000      

quantification error (%) 0   quantification error (%) 0      

survey time (min/site) NA   survey time (min/site) NA      

frequency (surveys/year) 365   frequency (surveys/year) 365      

max workday (hours) NA   max workday (hours) NA      

travel time (min/site) NA   travel time (min/site) NA      

number of OGI FU crews 1   number of OGI FU crews 1      

temporal coverage 0.25   temporal coverage 1      

extra OGI surveys  
per year 1   extra OGI surveys  

per year 1      

Note: Extra OGI and OGI FU 
have the same parameters as 
the OGI method aside from 
survey frequency.

* Survey frequencies 1, 2, 4, 6, and 12 
are used in the section:  Mobile 
screening and survey LDAR 
comparison at Barnett processing 
sites with varying survey frequencies 
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Results: LDAR Program 
Emissions and Cost Modeling

LDAR technology comparison across different leak rate 
distributions with fixed survey frequency
Barnett production sites (typical emitting)

Simulated mitigated emissions from programs defined in Table 3 (with fixed 
survey frequencies), as shown in Figure 11, are the highest for the continuous 
monitor method with high frequency operations and lowest for the aircraft with 
the highest MDL for the Barnett production site (typical emitting) scenario. This 
is a result of both a higher MDL and survey frequency of monitoring where CM 
can have MDLs like those of an OGI camera and perform screening daily. All 
technologies show a significant improvement in reductions comparable with that 
of using 4x annual OGI (P_OGI, Figure 13), although only P_CM_2 and P_Aerial_3 
(lowest MDL) show an improvement over P_OGI (Figure 11). Figure 12 shows 
that the inclusion of a single annual OGI added into a screening program can 
effectively reduce emissions for some of the higher MDL programs, for example 
nearly 40% of the mitigated emission from P_Aerial_1 was attributed to the single 
OGI screening. In contrast, less than 1% of mitigated emission from P_CM_2 was 
attributed to the annual OGI. For this case study of Barnett production sites, the 
additional 1x OGI into all but P_CM_2 seems necessary in providing an equivalent 
emissions reduction when compared 
to the 4x annual OGI program.

Program costs per site, as shown in 
Figure 14, are the highest for P_CM_2 
while P_Aerial_1 is the least costly. 
The higher cost for P_CM_2 is both 
due to daily operating costs, and 
the requirement of frequent OGI 
follow-ups. Cost mitigation ratios for 
production sites in the Barnett, as 
shown in Figure 15, are the highest 
for P_CM_2, while P_ Aerial_3 has the 
lowest. Cost of mitigation is largely 
driven by the program cost, as most 
programs have comparable abilities to 
mitigate emissions. 

Figure 11: Breakdown of emissions (CH4) by program (emitted = slate, 
mitigated = green) at Barnett production sites over 5 years with 4x annual OGI 
surveys / 6x screenings with OGI FU and 1x OGI annual survey.
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Figure 12: Breakdown of 
mitigated emissions by 
initial detecting program 
at Barnett production sites 
over 5 years. 

Figure 13: Distribution plot 
of simulated emissions 
(CH4) where each data 
point is system-wide site 
average emissions for 
each simulated day and for 
each program at Barnett 
production sites over 5 
years.

Figure 14: Annual cost per 
site at Barnett production 
sites. Includes upfront costs 
of technologies.

Figure 15: Cost-mitigation 
($/CO2e/year) distribution 
plot where each data point 
is system-wide ratio of 
total program cost to total 
program mitigated emissions 
at Barnett production sites. 
Forty independent 5-year 
simulations were run for 
each program. 
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Barnett compressor stations (high emitting)

Simulated mitigated emissions as shown in Figure 16, are the highest for 
the P_CM_2 and lowest for the 4x annual OGI program (P_OGI) for the Barnett 
compressor station (high emitting) scenario. All technologies show a signif-
icant improvement in reductions and show potential equivalency with P_OGI 
(Figure 17). Figure 18 shows that the inclusion of a single annual OGI added 
into a screening program can effectively reduce emissions for some of the 
higher MDL programs, for example nearly 9% of the mitigated emission from 
P_Aerial_1 was attributed to the single OGI screening, which is enough improve 
emissions reduction to equivalence with P_OGI. In contrast, less than 2% of 
mitigated emission from P_CM_2 and P_CM_1 are attributed to the annual OGI 
work practice. For this case study of Barnett compressor stations, the addition-
al 1xOGI into all but the programs with continuous monitoring technologies are 
necessary in providing an equivalent emissions reduction when compared to 
the 4x annual OGI program. However, the reliance of the 1xOGI to achieve equiv-
alence is less so for higher emitting sites then for lower emitting sites. 

Program costs and costs of mitigations for high emitting compressor stations, 
as shown in Figure 19, were the highest when CM technologies were employed 
and lowest for P_Aerial_1. Similar to Barnett production sites, the higher cost of 
mitigation with CM technologies is due to both higher operating costs and more 
frequent OGI follow-up. Interestingly, cost mitigation is two orders of magnitude 
smaller for all methods with Barnett compressor stations compared to Barnett 
production stations. This is a result of the total emissions increasing several or-
ders of magnitude, while the increase of cost was smaller, and was only a result 
of additional follow-up OGI surveys for screening methods. 

Figure 16: Breakdown of 
emissions (CH4) by program 
(emitted = slate, mitigated = 
green) at Barnett compressor 
stations over 5 years with 
4x annual OGI surveys / 6x 
screenings with OGI FU and 1x 
OGI annual survey.
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Figure 17: Distribution plot 
of simulated emissions (CH4) 
where each data point is 
system-wide site average 
emissions for each simulated 
day and each program at 
Barnett Compressor Stations 
over five years.

Figure 18: Breakdown of 
mitigated emissions by initial 
detecting program at Barnett 
compressor stations. 

Figure 19: Cost-mitigation 
($/tCO2e/year) distribution 
plot where each data point 
is system-wide ratio of total 
program cost to total program 
mitigated emissions at 
Barnett compressor stations. 
Forty independent 5-year 
simulations were run for each 
program. 
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Fayetteville production sites (low emitting)

As shown in Figure 20, simulated mitigated emissions are the highest for  
P_CM_2 and lowest for the 4x annual P_Aerial_1 for the Fayetteville production 
site (low emitting) scenario. All technologies show a significant improvement 
in reductions (Figure 17). Figure 22 shows that the inclusion of a single annual 
OGI added into a screening program can effectively reduce emissions for all 
programs, for example nearly 98% of the mitigated emission from P_Aerial_1 
was attributed to the single OGI screening. In contrast, less than 1% of mitigat-
ed emission from P_CM_2 is attributed to the inclusion of an annual OGI. 

Like production stations and compressor stations in the Barnett, costs 
for production stations in the Fayetteville play, are the highest when CM 
technologies are employed, P_Aerial_1 is the least costly. Although unlike 
compressor stations and production sites in the Barnett, costs from Fayetteville 
have minimal contributions from follow-up surveys due to fewer detections 
from screening technologies. The exception to this is P_CM_2, where the sensor 
is sensitive enough to detect the smaller leaks common in the Fayetteville 
distribution. Cost mitigation ratios for production sites in the Fayetteville play, 
as shown in Figure 23, are again the highest for P_CM_2. Although P_OGI is the 
second most costly program to use, here it is modeled to be the most cost-
effective approach at reducing emissions.

Figure 20: Breakdown of emissions 
(CH4) by program (emitted = slate, 
mitigated = green) at Fayetteville 
production sites over 5 years 
with 4x annual OGI surveys / 6x 
screenings with OGI FU and 1x OGI 
annual survey.
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Figure 21: Distribution plot 
of simulated emissions (CH4) 
where each data point is 
system-wide site average 
emissions for each simulated 
day and for each program at 
Fayetteville production sites 
over 5 years.

Figure 22: Breakdown of 
mitigated emissions by 
initial detecting program at 
Fayetteville production sites at 
Fayetteville production sites 
over 5 years. 

Figure 23: Cost-mitigation 
($/tCO2e/year) distribution 
plot where each data point 
is system-wide ratio of total 
program cost to total program 
mitigated emissions at 
Fayetteville production sites. 
Forty independent 5-year 
simulations were run for each 
program. 
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Results: Mobile screening and survey LDAR comparison at Barnett processing 
sites with varying survey frequencies.

For all mobile (aerial, drone, OGI) work practices/methods, as the number of 
annual surveys increases, the percentage of modeled mitigated emissions also 
increases (Figure 24). However, we found that there is a diminishing return, 
where for example the percentage of emissions mitigated in the Aerial_1 
program was roughly the same whether aerial surveys were performed 6 times 
a year or 12 times a year. Like the results from the previous section, P_ OGI had 
a higher mitigation percentage than the screening methods. Notably, it took 4, 
2, 1, and 2 surveys per year respectively (with OGI follow-up) using the Aerial_1, 
Aerial_2, Aerial_3 and Drone systems to achieve equivalent or better mitigated 
emissions as annual OGI. The diminishing return of surveys and screenings 
in modeling is a result of a leak production rate (LPR) value, where an LPR 
of 0.0065 leaks/day/site or 2.34 leaks/year/site will result in few leaks, and 
smaller emissions found on each subsequent survey.

Figure 24: Estimated emissions mitigation from the use of different 
technologies on production sites in the Barnett with different survey 
frequencies.
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Concluding Remarks
While hundreds of data files were shared with GTI containing hundreds of thou-
sands of data points, it is important to note that each methodology:

•	 Operates according to very different sensing principles 

•	 Is deployed using different work practices 

•	 Employs different analytics to estimate source location and emission rates,

•	 Reports different information to the end user. 

•	 Represents only a case study in this report for how the methodology may 
be implemented

There are no data reporting standards for these methodologies, so for the 
purposes of the study, GTI focused on the use cases and other ways that the 
data could be used to explore the performance of advanced methane detection 
methods. It is important to note that the LDAR programs detailed and simulated 
in this report represent hypothetical case studies and are not immutable rep-
resentations of any given technology or technology class. General consensus 
exists that various solutions perform better or worse under different conditions 
and that no solution is a ‘silver bullet’.

Ultimately, the programs show a varied range of emissions reduction where 
a continuous monitoring sensor with a handheld follow-up survey is the most 
effective, while a higher minimum detection limit (MDL) and higher number of 
sites per day aircraft conducted on an annual survey frequency had the lowest 
mitigated emissions and lowest cost of mitigation.

As demonstrated by Figure 24, while emissions continue to decrease with in-
creased survey frequency, there are diminishing returns in emissions reduction 
with increasing survey frequency for aerial technologies with different MDLs 
(High MDL, 20kg/hr = Aerial_1, Medium MDL, 10 kg/hr = Aerial_2, Low MDL, 
5kg/hr = Aerial_3).

CM sensors demonstrated the highest reduction in emissions, but also cost 
substantially more on a cost of mitigating methane in U.S. dollars per metric ton 
of mitigated carbon dioxide equivalent of fugitive methane ($/tCO2e).

Importantly, every methane detection technology resulted in a reduction of 
emissions with varying effectiveness and varying mitigation cost. CM sensors 
were the most effective at reducing emissions, but at the highest cost to  
deploy and mitigate. On the other hand, high MDL aircraft-based technologies 
(Aerial_1) had the lowest cost per ton to mitigate emissions, but was capable  
of mitigating the smallest percentage of emissions.
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Appendix

Figure 25: LDAR-Campaign 
with Screening Technology and 
Survey follow-up

28
WHITE PAPER

Evaluation of Emerging Methane Detection Methods



Figure 26: LDAR-Campaign 
with Survey Technology
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