

Chemical Recycling of Mixed Plastic Waste Feedstock with Screw Pyrolysis Technology

Hans Leibold, Marco Tomasi Morgano, Frank Richter

Institute for Technical Chemistry

KIT - The Research University in the Helmholtz Association

Plastic waste in Germany 2017

Pyrolysis of plastic materials

STYX Pyrolysis reactor

09.10.2019 Chemical Recycling of Mixed Plastic Waste Feedstock with Screw Pyrolysis Technology Hans Leibold et al.

Feedstock investigated

Polyethylen/Polypropylen mixture	PE/PP
Post-consumer mixed plastic waste (model)	MPW
 AcryInitrile-Butadien-Polyamide Polycarbonate Polyamide 	ABS
Sorting residue	SR

Pretreatment of feedstock

Hot stage microscope data

- Swelling of specimen at the melting point
- Structure breakdown far above the melting point
- Breakdown depends on plastic type
- 6 09.10.2019 Chemical Recycling of Mixed Plastic Waste Feedstock with Screw Pyrolysis Technology Hans Leibold et al.

Pyrolysis PE/PP

Mass Balance

Analysis of the PE/PP pyrolysis products

- Valuable olefine fraction in the pyrolysis gas
- Hydrocarbons < C₂₁ in wax/ condensate product by GC
- Staged condensation of hydrocarbons can be optimized

MPW - Post-consumer plastic waste Mass and carbon partitioning

MPW + Ca(OH)₂

- Products: Condensate, permanent gas, solids no wax
- Condensate contains about 1.0 wt.% water from sorption reactions
- Most of the aromatics are converted into coke
- HCl removal from vapors > 99.0 %
 - \rightarrow Cl^- $\,$ 343 mg/kg in condensate
 - \rightarrow HCl 225 mg/m³ in pyrolysis gas (N₂–free)

ABS - Mixed plastic waste Mass and carbon partitioning

Condensate > 66 wt.% on total input basis

- Carbon loss due to larger hydrocarbons in gas + very low concentration in solids
- Concentration Cl⁻ in condensate < 150 mg/kg
- Qualitative analysis of pollutants in gas indicates presence of HCI, HBr and HCN

MPW and ABS Plastic waste Gas analysis

- Heating values similar to natural gas and superior to biogas
- Chemicals recovery from the permanent gas: (ethylene and propylene)
- Not all the species are quantitatively measured $(C_{5+}) \rightarrow$ additional recovery of chemicals
- Removal of trace components such as HCN from ABS and halogens HCl and HBr from PVC and from flame retardants in scrubber

ABS Condensate GC-MS and refining tests

12 09.10.2019 Chemical Recycling of Mixed Plastic Waste Feedstock with Screw Pyrolysis Technology Hans Leibold et al.

SR – Sorting residue Catalytic upgrading

Mass Balance

Pyrolysis Core process of plastic circular economy

Ecological balance pyrolysis

Substitution primary energyBase 1 t model mixture post-consumer plastic waste

Thinkstep 2018

15 09.10.2019 Chemical Recycling of Mixed Plastic Waste Feedstock with Screw Pyrolysis Technology Hans Leibold et al.

Summary and outlook

- Pyrolysis of mixed plastic waste materials with different thermal properties.
- Particle-free liquid and gaseous products for chemical recycling of plastic waste.
- Pretreatment and adapted pyrolysis process are mandatory.
- Selective removal of chlorine by dry in-situ sorption with alkali/earth alkali compounds.
- Catalytic pyrolysis enables advanced pyrolysis products.
- Ecological evaluation with mechanical recycling and combustion reveals the potential of plastics pyrolysis.

Refining of products according to FCC and steam cracker requirements.

Post-consumer mixed plastic waste - MPW

Plastics 2013	Plastic waste total		Plastic waste Post-Consumer		Plastic waste Post-Industrial kt		Model mixture
	kt	%	kt	%	Producer	Processor	%
PE-LD/LLD	1446	25,5	1310	27,6	11	125	30,0
PE-HD/MD	750	13,2	631	13,3	6	110	15,0
РР	955	16,8	797	16,8	13	145	15,0
PS	290	5,1	263	5,5	2	25	10,0
PS-E	117	2,1	91	1,9	3	23	0,0
PVC	647	11,4	520	11,0	13	114	10,0
ABS, ASA, SAN	98	1,7	74	1,6	1	23	10,0
PMMA	32	0,6	26	0,5	1	5	0,0
PA	84	1,5	59	1,2	4	21	0,0
PET	568	10,0	520	11,0	3	45	10,0
Misc.							
Thermoplastics	129	2,3	89	1,9	6	34	0,0
PUR	243	4,3	182	3,8	6	55	0,0
Misc. Plastics	320	5,6	185	3,9	2	133	0,0
Total	5679	100,0	4747	100,0	74	858	100,0

H₂C₂

CH₂

Source: Analyse/Beschreibung der derzeitigen Situation der stofflichen und energetischen Verwertung von Kunststoffabfällen in Deutschland Consultic Marketing & Industrieberatung GmbH für ITAD, April 2015

17 09.10.2019 Chemical Recycling of Mixed Plastic Waste Feedstock with Screw Pyrolysis Technology Hans Leibold et al.

Ecological balance pyrolysis

Thinkstep 2018

18 09.10.2019 Chemical Recycling of Mixed Plastic Waste Feedstock with Screw Pyrolysis Technology Hans Leibold et al.