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Orthodoxy in fast pyrolysis
• Definition of pyrolysis: “Thermal decomposition of organic 

compounds in the absence of oxygen.” 
– Biorenewable Resources: Engineering New Products from Agriculture

• Products of pyrolysis: “Bio-oil, biochar, non-condensable gases.” 
– Biorenewable Resources: Engineering New Products from Agriculture

• Bio-oil: “Bio-oil is an emulsion of lignin-derived oligomers in an 
aqueous phase composed primarily of carbohydrate-derived 
compounds.” 

– Biorenewable Resources: Engineering New Products from Agriculture
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Heterodoxy in fast pyrolysis
• Definition of pyrolysis: “Thermal 

decomposition of organic compounds 
– and a little oxygen is just fine.”

• Products of pyrolysis: “Let’s add 
sugar among the major products.”

• Bio-oil: “Why would you even want 
to produce an unstable emulsion?”
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A scientist and engineer walk 
into a bar…

• Scientist: Asks questions.
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• Engineer: Solves problems.



Why do we exclude oxygen 
from pyrolysis?

• Combustion happens: 
C6H10O5 + 6O2 6CO2 + 5H2O

• Mitigating factors:
‒ Operation at low equivalence 

ratios
‒ Operation at temperatures 

lower than traditional 
combustion

‒ Variations in reaction rates 
among pyrolysis products
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What is the upside of adding 
oxygen (as air)?
• Eliminates tail gas recycle 
• Exothermic energy release of 

oxidation can provide enthalpy 
for pyrolysis

• Heat transfer bottleneck to 
process intensification can be 
removed!
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φ = 𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Autothermal Pyrolysis
0.06 ≤ φ ≤ 0.12

Gasification
0.20 ≤ φ ≤ 0.35

Pyrolysis
φ = 0.00

Combustion
φ > 1.0



• Simulate adiabatic operation
‒ Use of guard heaters to overcome 

parasitic heat losses at small scale

• Mitigate hot spots that promote 
undesired oxidation reactions
‒ Use of fluidized bed for good 

internal heat and mass transfer
• Operate at minimum equivalence 

ratio that provides enthalpy for 
pyrolysis
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Design considerations for a lab-
scale autothermal pyrolyzer

Polin et al., Applied Energy 249 (2019) 276-285



Process intensification through 
autothermal pyrolysis
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Both nitrogen-blown, 
conventional pyrolysis 
and air-blown (φ=0.11), 
autothermal pyrolysis 
were performed in the 
same 8.9 cm diameter 
fluidized bed reactor.

Polin et al., Applied Energy 249 (2019) 276-285
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What is the impact of heat 
transfer on scaling up processes?

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟



How much sugar can be  produced 
via fast pyrolysis?
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Compound Glucose
(wt%)

Cellobiose
(wt%)

Maltose
(wt%)

Malto-
hexaose

(wt%)

Cellulose
(wt%)

Curdlan
(wt%)

Waxy 
maize 
starch
(wt%)

Levoglucosan 7.00 24.4 20.5 33.1 58.8 44.2 48.5

Unidentified* 40.8 23.6 32.4 20.5 7.1 18.1 13.2

*Includes gases, water and some unidentified organic compounds

Patwardhan et al., J. Anal. Appl. Pyrolysis 86 (2009) 323-330



Why don’t we find much sugar 
in bio-oil?

11Patwardhan et al., Bioresource Technology 101 (2010) 4646-4655

Alkali and alkaline earth metals (AAEM) catalyze pyranose 
(and furanose) ring fragmentation during pyrolysis



Overcoming the deleterious effect 
of AAEM on sugar yields
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Mineral acid pretreatments convert AAEM into thermally 
stable salts that passivate catalytic activity of the metals

Kuzhiyil et al, ChemSusChem 5 (2012) 2228-2236 



Process intensification through 
py sugar production
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Sugar production for pyrolysis and solvent liquefaction based on sugar yields and processing rates 
experimentally observed at ISU.  Enzymatic hydrolysis data from Nguyen et al., 2015. 
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How can we separate organic 
components of pyrolysis vapors?
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Pollard et al., Journal of Analytical and 
Applied Pyrolysis 93 (2012) 129-138

Selective condensation of pyrolysis vapors
methanol methanol
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Fractionating Bio-oil Recovery

Feeder

Reactor
Cyclones

Heavy 
Ends 

Quench 
Reactor

Heavy 
Ends 
ESP

Water 
injection

Biochar

Sugars & phenolic oil

Light oxygenates 
& water

Pollard et al., Journal of Analytical and 
Applied Pyrolysis 93 (2012) 129-138

Polin et al., Journal of Analytical and 
Applied Pyrolysis 143 (2019) 104679
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Separating heavy ends into 
sugars and phenolic oil

Heavy ends

Water Pyrolytic 
Sugars

Phenolic
Oil

Component Heavy 
ends

(wt% d.b.)

Extracted 
sugar 

fraction
(wt% d.b.)

Sugars 29.2 61.1

Phenols 61.9 22.4

Acids 3.0 3.8

Other 5.87 12.7

Extraction of corn stover-derived heavy ends

Rover et al., ChemSusChem 7 (2014) 1662-1668



Cleaning py sugars
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Pyrolytic Syrup 

Contaminant Removal 
(phenolic compounds)

Pyrolytic Sugars 
(99.5% pure)

Levoglucosan 
(99.4% pure)

Phenolic 
Monomers

Rover et al., Green Chemistry (2019) DOI: 10.1039/C9GC02461A 

Stanford et al., Separation & Purification Technology 194 (2018) 170-180



Why does acid pretreated 
biomass agglomerate?
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AAEM

H+ SO4
2-

Biomass Lignin

H+

• Alkali and alkaline earth metals in biomass catalyze both pyranose/ 
furanose ring fragmentation and lignin depolymerization

• Lignin melts and agglomerates rather than depolymerizes and 
volatilizes in the absence of suitable metal catalyst 



Why does acid pretreated 
biomass agglomerate?
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AAEM

H+

SO4
2-

Stable salt

Biomass Lignin

H+

• Alkali and alkaline earth metals in biomass catalyze both pyranose/ 
furanose ring fragmentation and lignin depolymerization

• Lignin melts and agglomerates rather than depolymerizes and 
volatilizes in the absence of suitable metal catalyst 

Agglomerated char from 
acid pretreated biomass

Lignin catalyst lost!
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• Find an ionic compound for which:
‒ Anion passivates AAEM
‒ Cation selectively catalyzes lignin depolymerization

• Compound must be water soluble to assure its 
diffusion into the plant cell walls

• Ferrous sulfate provides these functions

AAEM

Fe2+ SO4
2-

Biomass Lignin

Preventing char agglomeration

Rollag et al., manuscript in preparation (2019)

Lignin catalyst replaced!
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• Find an ionic compound for which:
‒ Anion passivates AAEM
‒ Cation selectively catalyzes lignin depolymerization

• Compound must be water soluble to assure its 
diffusion into the plant cell walls

• Ferrous sulfate provides these functions

AAEM

Fe2+

SO4
2-

Stable salt

Biomass Lignin

Preventing char agglomeration

Powdered char from 
ferrous sulfate 

pretreated biomass

Rollag et al., manuscript in preparation (2019)

Lignin catalyst replaced!



Preventing char agglomeration

22

Ferrous sulfate pretreatment eliminated char 
agglomeration for most kinds of biomass tested
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Why don’t we get more than 60% 
yield of sugars from cellulose? 
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Lignocellulosic 
Biomass

Product Recovery

Unrefined Sugars 
from Polysaccharide

Unrefined Acetate 
from Hemicellulose

Autothermal Pyrolysis

Phenolic Oil 
from Lignin Biochar

First Generation
Products

Ethanol Bio-asphalt and 
marine fuel

Soil Amendment

Potential 
Future Products

-Pharmaceuticals
-Polymers

-Octane enhancers
-Drop-in Fuels
-Biobased Chemicals

-Acetone
-Acetic Acid
-Bio-cement
-Alcohols

-Activated Carbon

Putting it all together: Py refinery

In-plant 
thermal 
energy
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Economics of Py Refinery
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Sugar Production Cost ($/MT)

• Low cost cellulosic sugars from woody biomass across a wide range of 
assumptions

• Feedstock cost and phenolic oil (PO) value are key cost drivers

Price 
range for 
enzymatic 
hydrolysis 

of 
cellulosic 
biomass
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• Iowa project (Redfield, IA)
‒ Privately financed by Stine Seed 

Farms
‒ Engineering, Procurement and 

Construction provided by Frontline 
Bioenergy

‒ Conversion of corn stover into 
sugars, phenolic oil and biochar

• California project (El Dorado Hills)
‒ Funded by CA Energy Commission
‒ Partnership with Lawrence 

Livermore National Laboratory and 
Frontline Bioenergy

‒ Feasibility of converting wood 
waste into drop-in biofuels

26

Next Step: Demonstrate autothermal 
pyrolysis at 50 tons per day scale
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Questions?
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