

Recent Progress in Biocrude Upgrading and Co-processing

David C. Dayton, Ph. D. RTI Senior Fellow and Biofuels Director

Bio-crude Upgrading Overview

Investigate the impact of bio-crude quality in the hydroprocessing step

- Steady-state deoxygenation activity, hydrogen demand, and process severity with bio-crude of various quality (wt%O and chemical composition)
- Long-term operation to determine upgrading catalyst stability and lifetime (500-1000 hrs)
- Refinery integration and co-processing strategies

Reactor volume: 350 mL Catalyst volume: 20 - 250 mL LHSV - 0.1 to 1.0 Flow rates - 50 to 250 mL/h Max. design pressure - 3000 psig Max. design temperature - 450 C

Bio-crude Upgrading Overview

Catalyst Loading, Sulfidation, and HDT Process Conditions

- HDT Catalyst: HaldorTopsøe Bio-Cat
- Catalyst Sulfidation: In-situ with H₂S in H₂ balance.
- Bio-crude flow rate: 50-250 ml/h
- Mass Balance Protocol: Allow at least 48 hours of run time prior to performing mass balance.
- Experiments continue until pressure drop across reactor > 60-100 psig or feed runs out

Parameters	Typical Test Conditions		
Temperature	290 – 350 °C		
Pressure	1450-2000 psig		
LHSV	0.125 - 0.5 1/h		
H ₂ /oil	2000-3300 NI/I		

Analysis of Bio-crude and HDT products include:

Elemental Analysis (CHNSO), GC-MS, FTIR, NMR, Carbon Number Distribution, Distillation by ASTM D1160, SG 60/60 by ASTM D4052, Kinematic Viscosity by D445, and Karl Fischer Titration.

Bio-crude Upgrading Overview

Challenges:

- High process severity (T, P, LHSV) is required for bio-crude upgrading
- Bio-crude upgrading is limited by catalyst deactivation

 Poor bio-crude thermal stability (reactivity) causes reactor fouling/plugging.

Bio-crude quality beyond wt% O. How does bio-crude chemical composition impact upgrading?

Strategies for Bio-oil/Bio-crude Upgrading

Strategy	Process
Pre-processing	 Ultrafiltration Ion exchange Chemical modification (esterification, etherification, neutralization)
Stabilization	 Mild hydrotreating 200°C, 1500 psig, Ru/C
Fractionation	Separations (Liquid-Liquid Extraction)Distillation (Thermal Stability)
Pyrolysis process	 Catalysts, process conditions, and feedstocks to control chemical composition. Target: ~15 wt% oxygen
Co-processing	 Hydrotreat blends of petroleum refining intermediates and bio-crude (5-50 vol%) to control oxygen and sulfur content

Pine CFP Bio-crude Compositions

wt.% dry basis	Α	В	С	D*	E
С	72.7	73.1	69.7	76.6	63.7
Н	7.1	7.1	7.2	7.9	6.7
N	0.6	0.3	0.3	0.5	0.5
0	19.6	19.5	22.8	15.0	29.6
H/C	1.17	1.17	1.24	1.24	1.26

Pine Bio-crude Hydrotreating: Feedstock and Process Conditions

Pine Bio-crude Hydrotreated Products

Bio-crude Separations

Extract

Solvent Extracted Bio-crude Hydrotreating: Physico-chemical Properties

Time on stream, hours

Catalyst	TK-341
H ₂ Flow Rate (sccm)	400
Feed Rate (g/h)	70-77
Pressure (psig)	2000
Average Temperature (°C)	300
LHSV (h-1)	0.35
H ₂ /oil ratio (NI/I)	3300

Hydrotreated Product Compositions

RCFP Bio-crude Production and Upgrading

12-L RCFP bio-crude produced in 2"FBR over 10 months Average Hydrogen Consumption: 2.3 wt% Biomass

Reaction Conditions

Catalyst: Mo/Al₂O₃ Hydrogen: 80 vol%

Temperature: 460°C

	Carbon Balance*	Mass Balance
Aqueous	2.5	27.4
Organic (C ₄ ⁺)	43.0	19.6
Liquid Bio-crude	26.4	15.9
C4-C6	16.6	3.7
Gas	26.8	13.1
Char+Coke	30.1	35.9
Total	102.4	96.0

RCFP Bio-crude Composition (GC-MS Area%) Elemental

8.5

73.2 7.3

19.3

3.54	■ Unknown	Properties			
22 36	■ Anhydrosugars	Moisture, wt%			
22.30		C wt%, dry			
	■ Multifunctional phenols	H wt%, dry			
6.58		N wt%, dry			
	Monotunctional phenois	O (by diff)			
	■ PAH				
	■ Mono-aromatics				
48.18	Acids				
	■ Furanics				
	■ Multifunctional Carbonyls				
10.53	Monofunctional Carbonyls				
1.90 4.95	■ Aliphatics				
	22.36 6.58 48.18 10.53 1.90	 Unknown Anhydrosugars Multifunctional phenols Monofunctional phenols PAH Mono-aromatics Acids Furanics Multifunctional Carbonyls Monofunctional Carbonyls Monofunctional Carbonyls 			

RCFP Bio-crude Upgrading: Physico-chemical Properties

Catalyst	TK-341
H ₂ Flow Rate (sccm)	3300
Feed Rate (g/h)	62
Pressure (psig)	2000
Average Temperature (°C)	300
LHSV (h-1)	0.31
H ₂ /oil ratio (NI/I)	3300

RCFP Bio-crude Upgrading: Hydrotreated Product Compositions

Co-processing Bio-crude with Refinery Intermediates

30% Light Cycle Oil (LC) or Partially Upgraded Bio-crude (CPO) blended with 70% straight run diesel

Droporty	30/70	30/70	30/70	30/70	30/70
Property	LC1/LG	LC2/LG	CPO1/LG	CPO2/LG	CPO3/LG
H, wt %	12.46	12.14	12.80	12.58	12.31
O, wt %	-	-	1.26	1.84	2.47
S, wt %	1.19	1.00	0.828	0.903	0.717
N, ppm	213	433	258	327	377
SG	0.863	0.873	0.861	0.867	0.882

- No additional pressure drop with CPO
 - 6% lower diesel yield from CPO ([O] in feedstock and light and a heavy fractions outside diesel range)
- Lower H₂ consumption for CPO compared to the LCO (HDS vs. HDO)

RCFP Bio-crude Co-processing with Light GasOil

Analysis	Unit	LG	RCFP	10/90 RCFP/LG	15/85 RCFP/LG	20/80 RCFP/LG
SG at 60/60°F		0.8541	1.005	0.8667	0.8726	0.8782
0	wt %	-	9.65	-	-	-
\$	wt %	1.30	0.001	1.14	1.04	1.01
N	wt ppm	148	425	165	180	201
Н	wt %	13.09	8.28	12.59	12.43	12.18

200

400

600

Run Hour (h)

800

1000

1200

- > 1000 hours without shut-downs or severe deactivation
- Blended feed oxygen in the range 0.9 1.9 %wt
 Product oxygen ≤6 ppmw
 - Approximately 89 % of RCFP bio-crude converted to hydrocarbons on weight basis

0.8250

Summary

Conclusions

- Commercially-relevant steady-state hydrotreating
 - More anyhdrosugars and acids = faster reactor plugging
 - Pyrolysis processes for minimizing thermally unstable components
 - Separations for removing undesirable components
 - Co-processing (50% lower pressure) to minimize impacts of biocrude composition
- Hydrotreating catalyst deactivation
 - Mechanism
 - Sulfur loss
 - Recovery by increasing temperature

Total oxygen content for hydrogen demand Oxygen speciation for upgrading process performance

Caution: What is not identified with GC/MS that causes additional problems?

Acknowledgements

RTI Biomass Team

- Dr. Ofei Mante
- Dr. Phil Cross
- Joseph Weiner
- Jonathan Peters
- Gary Howe
- Kelly Amato

Haldor Topsøe A/S

- Jostein Gabrielsen
- Nadia Luciw Ammitzboll
- Sylvain Verdier
- Christian Ejersbo Strebel

RTI Bio-crude Production Capabilities

Pilot-scale (1TPD) in situ Catalytic Fast Pyrolysis

- Continuous feed circulating fluidized bed reactor/regenerator
- Pyrolysis temperature: 350-500 °C
- Regenerator Temperature: 560-640 °C
- Residence time: 0.5-1.0 s
- Biomass Feed Rate: 35-70 kg/h
- Bio-crude production rate: 20-50 gal/hr

<u>Laboratory Fluidized Bed Reactor</u> <u>System</u>

- 2.5" fluidized bed reactor with 4" disengagement zone
- Biomass feeding rate: 2-5 g/min
- · Liquid collection: 3 condensers and 1 ESP
- Non-condensable gases analyzed by micro GC
- Liquid product analyzed by Karl Fischer titration, elemental analysis, GC/MS

