Going ‘Jettyless’ Opens New Markets

Arjan Maijenburg
Engineering Manager
Shell Projects and Technology
Definitions and cautionary note

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to Royal Dutch Shell plc and its subsidiaries in general or to those who work for them. These terms are also used where no useful purpose is served by identifying the particular entity or entities. “Subsidiaries”; “Shell subsidiaries” and “Shell companies” as used in this presentation refer to entities over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as “joint ventures” and “joint operations”, respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in an entity or unincorporated joint arrangement, after exclusion of all third-party interest.

This presentation contains forward-looking statements (within the meaning of the U.S. Private Securities Litigation Reform Act of 1995) concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “aim”, “ambition”, “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas, (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. No assurance is provided that future dividend payments will match or exceed previous dividend payments. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s Form 20-F for the year ended December 31, 2017 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward-looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 4th of April 2019. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that the United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.
Changing drivers of LNG demand growth

Imports by gas market type

Demand driver	Country/region
Bunker fuel	Atlantic
Balances LNG supply	North West Europe
LNG replaces declining domestic production into existing demand	India
Thailand	UAE
Indonesia	
Malaysia	Colombia
Pakistan	
LNG complements domestic and pipeline supply	Southern Cone
Eastern Europe	Singapore
Southern Europe	Jordan
North America	Israel
Gas supply solely dependent on LNG	Japan
Korea	Dominican Republic
Taiwan	

* Denotes future LNG importing countries

Copyright Shell Global Solutions International B.V.
Reaching new customers with LNG
Small scale LNG terminal challenges

• Demand growth over time; need a scaleable solution
• Needs to be cost competitive against alternatives
• Often no or limited space available inside existing ports
• Port expansion plans are not defined
• Shallow water with shore crossing, possible need for dredging
• Possible challenging metocean conditions outside ports
• Conventional solutions with breakwaters and dredging CAPEX intensive
• Absence of local gas transmission grid
Jettyless technology

- A tower to which a vessel can be moored to offload LNG. Similar to existing SPM’s for oil products.
- Vessel will be moored to tower by means of bow loading station and hawser.
- Weathervaning system – higher uptime compared to conventional jetty. More flexible to site conditions.
- LNG to shore via tower by means of aerial hoses and cryogenic pipeline. No vapour return.
- Onshore scope of storage and regas can be scaled with growing demand.
- Subsea cryogenic pipeline loop – recirculation
LNG offloading tower solutions
Technical features – standardized design

- 1000m³/hr offloading
- Composite hoses in accordance with EN1474-2
- ESD1 and ESD2 similar to normal transfer operations
- Fire and gas detection
- Overpressure protection
- LNG swivel above water

- Normally unmanned during connections and offloading
- 20-25km³ LNGC with bow loading and mooring station
- Designed for small collisions
- Significant wave height max 3.5m
- Pile design - flexible for soil conditions
- Cooldown through LNGC; pipeline (2x10”) kept cold by recirculation
Case study – 0.7 mtpa

0.7mtpa facility

1. FSU, jetty, breakwater, onshore regas
2. Jetty, breakwater, onshore storage and regas
3. Jetty, onshore storage and regas
4. SPM, pipeline, onshore storage and regas
5. SPM, novel pipeline, onshore storage and regas
Cryogenic pipeline further development

- Single polymer composite material
- Can withstand cryogenic temperatures
- Low cost, available from the market
- Flexible, possibility to reel and apply as pipeline, riser and floating hose (liner)
- Smooth bore - low friction
- No corrosion
- Light weight – buoyancy control required

Shell patented
Summary and conclusions

• With jettyless technology LNG terminal cost can be reduced
• Compared to conventional solutions with breakwaters, a cost reduction of marine scope of 50% is possible.
• Jettyless technology offers flexibility in site location, high operability and generally reduces environmental footprint.