Offshore LNG
Revisiting the Concept

Dominique Gadelle
Vice-President Gas Monetization
TechnipFMC

Co-authors:
Sylvain Vovard, TechnipFMC
Benoît Laflotte, TechnipFMC
Loïc Ferron, TechnipFMC
Jean-Philippe Dimbour, TechnipFMC
The end of the era of high oil prices stalled investment but many lessons from this period are useful in the new environment.

FIDs for new capacity by year:

- **First Generation LNG**: 28 Mtpa
- **Mid-scale Chinese LNG**
- **Yamal LNG**

3% – 5% supply growth
First FLNG Generation
Lessons learnt

- Lessons of First Generation FLNG
 - FLNG feasibility is demonstrated
 - Minimize on-deck integration of modules including topside /hull interfaces
 - Consider specialized yards for topsides
 - Increase revenue per m²

- Lessons of Yamal LNG
 - Modularization on a large scale enables cost and schedule certainty in extreme locations
 - Large modules and FLNG type design would have advantages
 - Minimize cable pulling and other integration activities at site
Potential sources of cost reductions

Process and plant design
- Process simplification. Reduce the number of equipment items
- Use of larger and/or more compact equipment
- Layout optimization
- Improved reliability
- Greater efficiency / smaller utilities/ lower OPEX

Procurement
- Work with suppliers to review opportunities
- Design basis cooperation; Codes and standards; Documentation; QC

Construction
- Prefabrication and modularization including large modules

Project execution
- EPC contractual terms : risk sharing
- Qualification of high value subcontractors
- Modularization including mega-modules
- Digitalization
The FLNG market – opportunities at both ends

Meeting the challenge of producing competitively priced LNG offshore

<table>
<thead>
<tr>
<th>0.5 - 1.5 / 2 Mtpa</th>
<th>2 – 5 Mtpa</th>
<th>5 - 8 Mtpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>“MAG” Monetization of associated gas – small-scale</td>
<td>“Conventional”</td>
<td>“NewWave” Intensified processes with LNG production increased</td>
</tr>
</tbody>
</table>

Economies of feedstock – associated gas is a cost/constraint to the operator when reinjected or flared.

Economies of scale – gas is produced from large productive reservoirs often in deep water.

Combined with an array of design, execution and construction features common to all
DMR liquefaction technology:
- Highest production intensity & lowest emissions of any process,
- Design and operational feedback from several projects,
- MR liquid inventory, confined to exchangers by process design; MR liquid piping is welded

Dashed Refrigerant, Hybrid Cooling Principle

DMR liquefaction technology:
- Highest production intensity & lowest emissions of any process,
- Design and operational feedback from several projects,
- MR liquid inventory, confined to exchangers by process design; MR liquid piping is welded
Hybrid Cooling Benefits (*)

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling medium</td>
<td>Air Coolers</td>
<td>Hybrid (Air Coolers + SW)</td>
</tr>
<tr>
<td>Ambient conditions</td>
<td>Air: 28 + 1°C</td>
<td>Air: 28 + 1°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW: 21°C</td>
</tr>
<tr>
<td>Liquefaction capacity (MTPA)</td>
<td>2.1</td>
<td>2.6</td>
</tr>
<tr>
<td>MM size: L x W x H (m)</td>
<td>70 x 64 x 40</td>
<td>59 x 64 x 40</td>
</tr>
<tr>
<td>MM weight (t)</td>
<td>24 300</td>
<td>23 400</td>
</tr>
<tr>
<td>SW flow rate (m3/h)</td>
<td>N/A</td>
<td>6 300</td>
</tr>
<tr>
<td>SW collector design</td>
<td>N/A</td>
<td>36”</td>
</tr>
<tr>
<td>Cost index</td>
<td>100</td>
<td>87</td>
</tr>
</tbody>
</table>

(*) Based on same compressors Gas Turbine Drivers
Hybrid Cooling benefits summary

WMR condensation with SW lowers condensing temperature and increases LNG production
- Use of high-grade material with SW is justified by gain in production.
- If required, with a small production penalty, fresh CCW can be used

The use of AFCs minimizes interfaces with hull and simplifies integration
- Secures schedule as no water is required for compressor tests
- Commissioning of the liquefaction module at grade can include full recycle of compressors

Consideration can be given to SW supply and return systems dedicated to each liquefaction module
- Hull penetrations can be avoided
- No pipe-runs on the main deck.

Commissioning at yard maximized.

Overlap between construction and commissioning at quay to reduce carry-over risks.

In operation, compressor recycle can allow survival of a loss of cooling water

Reduced hull/topsides interfaces, increased LNG production, reduced CapEx and secured schedule
MegaModule™ design

- Operationally self-standing modules
 - Integrated construction completion and PC&C activities minimizing COW risks
 - Simplified pre-commissioning & commissioning sequence

- Overall quantities reduced for a given LNG throughput
 - Savings on supply quantities
 - Savings on fabrication costs
 - Man-hours savings
 - Shortened planning, limited integration
MegaModule™ design benefits on dimensions and weights

Separate yards for hull construction and topsides fabrication and integration
- Opening competition
- Savings in material quantities
- Cost and integration time savings

✓ Maximizing modules construction completion at ground level
✓ Skid-deck installation
✓ Minimize carryover work and integration
✓ Reduce Construction cost
✓ Secure schedule, provides float for Hull
 - Pre-commissioning / Full commissioning at yard
 - Maximize use of available real estate at yards
Maximized Onshore Pre-commissioning & Commissioning
MegaModule™ installation technique: jacking & skidding
TechnipFMC concept - costs can be improved in many ways

Current studies confirm a 30-40% cost reduction

<< 900$/tpa LNG Incl. Pretreatment & Utilities

- Quayside completion of larger functional modules
- Intensification
 - Processes
 - Machinery
 - Exchangers
 - Cooling
 - Separators
- Simplification
 - Standards & specs
 - Minimum interfaces
- Productivity
 - Scale
 - Availability
 - Subsea processing
 - Digitalization
7.5 MPTA FLNG design fits within industry references

Topside weight & Hull size: similar to largest FLNG, thanks to innovative Topsides design

Project Cost and Schedule significantly improved
Thank you for your attention

Visit us @ Booth