Less is More: Flare Minimization During Cooldown

Ted Sabram, Dr. CHEN Fei, Jerry Dunn
LNG Group
Air Products
Agenda

• The AP-C3MR™ Liquefaction Process
• Steps to LNG Production
• Traditional Liquefaction Train Cooldown
• New Method: Reduced Flaring Cooldown
• The AP-Autocool™ Program
• LNG Recycle
• Summary
LNG Facility Overview

Feed Gas
- Acid Gas Removal
- Dehydration and Mercury Removal
- Fractionation (NGL Extraction Unit)
 - Liquefaction with AP-C3MR™ Process and a Main Cryogenic Heat Exchanger
 - Higher Hydrocarbons (LPGs)

LNG Product
The AP-C3MR™ Process

Main Cryogenic Heat Exchanger (MCHE)

LNG

-150°C

Propane

Cold JT

Warm JT

MRV=Mixed Refrigerant vapor

MRL=Mixed Refrigerant Liquid

Natural Gas

30°C

Propane Pre-Cooling

30°C

-30°C

-35°C
Steps Towards First LNG Shipment

- Inert the system
- Defrost the equipment
- Introduce hydrocarbons
- Cooldown to LNG temperatures
- Adjust the operation
- Fill the tanks

Courtesy of Oman LNG
Traditional Cooldown Method

1. Precooldown from ambient to -30°C
2. Final cooldown from -30°C to -150°C
Traditional Precooldown Step

Purpose: cool the MCHE from ambient to propane temperatures to achieve uniform temperature profile and minimize thermal stresses.

- Blends defrost and feed gas
- Flows through the shell in the reverse direction and out to the flare
- Prepares the exchanger to accept cold feed and MR streams
- Typically takes ~12 hours
Traditional Final Cooldown Step

- Refrigerant flow started in the normal direction
- Cold JT valve opened first
- Warm JT valve opened shortly after
- Once the cooling slows, C1, C2, and C3 are added
- At the MR liquid transition point, cooling rate increases drastically and feed is added to control the cooldown rate
- N2 added to MR to achieve LNG temperatures
How Can We Simplify the LNG Cooldown Process?

- Eliminate the precooldown step
- Reduce flaring for environmental and cost reasons
- Simplify operator interactions
- Minimize time to LNG production
Reduced Flaring Cooldown: Open Cold JT Valve

Starting point:
- MCHE at ambient temps
- MR inventory is feed gas
- No C3 in the kettles
- Compressors on total recycle
Goal: maintain MCHE temperature profile so MCHE is cold from top to bottom.

Open warm JT Valve

Add C1, C2, C3 continuously.
Reduced Flaring Cooldown: Charge Propane

Charge propane kettles
- From high to low pressure
- Match Feed and MR temperatures from the Propane kettles to the MCHE warm end
- Cools MCHE from both ends
HP MR separator level established with phase separation creating MRL and MRV

Add C1, C2, C3 continuously.
Reduced Flaring Cooldown: Start Feed Gas

- MR liquid transition occurs around -80°C
- Feed flow needed to control cooldown rate
- Warm LNG is flared
- Continue increasing rates
- MR components added until design MR composition and MCHE temperature profile is achieved

Add C1, C2, C3 continuously.

Cooldown complete with no precooldown flaring!
• Field Data from first cooldown
• Completed in ~22 hours
• Close to maximum cooldown rates
• Eliminated the precooldown step with its flaring
• Simplified the cooldown as it replicates normal operation
• **One** board operator successfully cooled down from the control room
The AP-Autocool™ Program

• To further enhance the cooldown program Air Products developed the AP-AutoCool™ Program
• Automatically cools the MCHE from ambient to operating temperature
• Utilizes the existing valves and instrumentation
• Simple control algorithms
• Maintains optimal cooldown rate at AP guideline
• Reduces cooldown time to minimize LNG flaring
• Provides consistent and repeatable cooldowns
Results of AP Autocool
LNG Recycle

- Final option for flare reduction is to recycle the off-spec LNG back to front end
- Heat exchanger needed to vaporize the LNG and warm the stream
- Utilize an existing recycle compressor if available
LNG Recycle

- Recycle LNG to eliminate flaring but requires cooler and compression
Summary

- Reduced Flaring Cooldown, accomplished by staging the propane kettles, is a time and cost saving method to effectively cooldown the MCHE and liquefaction train.
 - Eliminates the precooldown step with its flaring
 - Allows one operator to complete the cooldown
 - Has been successfullly demonstrated on multiple operating plants
- The AP-Autocool™ Program achieves the maximum permissible cooldown rate with reduced off-spec LNG flaring.
- Adding LNG recycle can virtually eliminate flaring during start-up.
Thank You