Infrastructure Changes to Reduce Methane Emissions

September 2019
Ed Newton
Emission Detection Cost Effectiveness

Leak Surveys by Pipe Classification

Increase the frequency of leak survey allows utilities to find leaks faster, repair leaks more quickly, and reduce emissions.

01 Unprotected Steel (No Cathodic Protection)
- 3 year to 1 year survey
- $34/MCF

02 "State of the Art" Plastic
- 5 year to 3 year survey
- $421/MCF

03 Protected Steel
- 5 year to 3 year survey
- $611/MCF
ACCELERATED SURVEY

STRATEGY
- Reduce number of unknown leaks

SOLUTION
- Change in survey rate from 3 years to annual

RESULTS
- Reduction in inventory of unknown leaks
- Reduction in associated emissions
- Allows for analysis of potential locations of large leaks

INCREASED ANNUAL LEAK SURVEY

<table>
<thead>
<tr>
<th></th>
<th>Annual</th>
<th>Multi-Year</th>
<th>Unsurveyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Change</td>
<td>51%</td>
<td>14%</td>
<td>34%</td>
</tr>
<tr>
<td>After Change</td>
<td>33%</td>
<td>9%</td>
<td>58%</td>
</tr>
</tbody>
</table>

INCREASED % OF LEAKS DETECTED

<table>
<thead>
<tr>
<th></th>
<th>Detected Leaks</th>
<th>Estimated Unknown*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Change</td>
<td>46%</td>
<td>54%</td>
</tr>
<tr>
<td>After Change</td>
<td>8%</td>
<td>92%</td>
</tr>
</tbody>
</table>

* Number of leaks are estimated in areas not surveyed in the report year
Large Leak Mitigation Strategy

01 COLLECT FIELD DATA
Leverage data collected during routine leak survey

02 DATA ANALYTICS
Algorithms identify leaks with highest probability to be “large” (10 CFH or more)

03 MEASURE SUBSET OF LEAKS
Measure approximately 20% of all leaks detected

04 PRIORITIZE LARGE LEAKS FOR REPAIR
Expecting 2% of total leak inventory to be “large”.

BENEFITS

1 Avoid measuring 80% of leaks detected
2 Minimize cost of implementation
3 Leverage accurate leak measurement methods
Progress to Date

SUCCESSFULLY BIASED THE SAMPLE POPULATION DISTRIBUTION

R&D completed developing data analytics approach to screen leak data

650+ leaks processed through data analytics with 102 leaks flagged for measurement (16%)

14 large leaks found out of 102 leaks measured (2% of the 650+ leaks processed)

Additional 180 leaks measured that were not flagged for measurement with only 2 large leaks found (1% - both on low end of “Large”)
Remote & Indirect Methane Quantification

6% of Leaks <10 Overestimated (miss-assigned)
26% of Leaks >10 Underestimated (missed)

Average Leak Flux Population % for Buried Distribution Leaks*
- 66.7% are between 0.0 - 0.5 cfh
- 16.3% are between 0.5 - 2.0 cfh
- 14.7% are between 2.0 - 10.0 cfh
- 2.3% are 10 cfh and above

*Derived from WSU study data

Leak Survey Application

- Reliable Leak Detection
 - Requires post data processing
- Reliable Leak Pin-Pointing
 - Requires alignment of emissions data with high-resolution imagery

Emissions Quantification

- Requires validation protocol
- Use of low statistical confidence levels will limit application
 - Increases number of outliers
- System accuracy dependent on number of measurements and knowledge of source locations
 - Effective for remote and difficult to access locations

Example Based on 4000 Leaks <10 CFH >10 CFH
- Population % from WSU: 97.7% 2.3%
- Actual Leak Rate Population: 3907 93
- 6% of Leaks <10 Overestimated: 108 0
- 26% of Leaks >10 Underestimated: 0 25
- Observed Leaks >10 CFH: 93 - 25 + 108 = 176

sUAS Methane Applications Summary
ANALYTICS TO SUPPORT QUANTIFICATION AND MITIGATION OF NATURAL GAS EMISSIONS ON CUSTOMER SIDE OF METER
For over 100 Years Odorant in Gas has been and continues to be the primary safety defense for indoor gas leak detection

- Department of Transportation’s Pipeline & Hazardous Materials Safety Administration (PHMSA) regulations require odorant to be added to natural gas so a person with reasonable sense of smell can detect a leak at 1/5 of the Lower Explosive Limit of natural gas.

Rapid Company response to Customer Odor Complaints *(within 1 hour)*

~47,000 leaks on customer piping and appliances *(2017 data)*
- 97% detected by the Customer smelling gas
- 3% detected through Advanced Meter Analytics (1,457 leaks)

Advanced Meter Analytics allows for detection of leaks on customer’s facility in instances where leaks go undetected
- Typically, where someone is not around to smell the gas

Advanced Meter Analytics allows for direct measurement of excessive consumption from leaks and from other reasons, such as gas appliances being left on
Consumption Patterns
Appliance (BBQ) Left on in error

CCF/Hr, Hundreds of Cubic Feet per Hour
Case Review – Meter Capacity Leak
Use Case: Occupied | Gas: 980 CFH

Analytics:
- **Analytics:** A facility was identified as having 780 CFH continuously going through the meter for a minimum of 24 hours.
- **Field action:** The on-call technician was dispatched and excessive registration was found upon arrival and the meter was left off. The leak peaked at 980 CFH before being turned off.

Results:
- **Analytics findings:** 11 days later the customer called to have the gas turned back on. The source of excessive registration was a downed tree that caused a break in the yard line. The odor from the leak was not detected due to the remote location of the meter, the distance between homes, and the fact that the customer was away on vacation. It is possible that it could have blown for at 11 days or more.

![Graph](image1.png)

- AM detected 10/30
- Normal Vacant Consumption
- Facility Served
- Approximate Meter Location
Case Review – *Hot Water Leak*

Use Case: Occupied | Gas: 32 CFH

Analytics:
- A facility detected as having a high consumption of 32 CFH (cubic feet per hour) for 5 days (per day average).
- **Field action**: The technician found a water leak that was causing the water heater to constantly stay on. The customer was contacted by phone to let them know about the hot water leak. The customer arrived shortly afterwards, the water was shut off at the main and the water heater was left off.

Analytics findings: In contacting the customer it was determined that although there was a customer of record and the facility was considered occupied, there was no one actually living here. As noted by the employee “The customer was very grateful for our company being proactive”.

Y-Axis is CCF/Hr, Hundreds of Cubic Feet per Hour
Summary

Odorant in natural gas has been and continues to be the primary safety defense for customer piping and appliance gas leak detection.

The Advanced Meter system allows for direct measurement of gas usage, which facilitates faster detection of leaks on customer facilities, in instances where leaks go undetected.

Estimated emissions and emissions mitigation (2017)
- Natural Gas Emissions from known leaks = 42,086 MCF
- Natural Gas Saved from AM Analytics* = 37,371 MCF

*When compared to practices prior to Advanced Meter consumption data analytics

AM Consumption Analysis

- 2017 data based on actual orders where Company identified and resolved reason for high consumption at occupied facilities
- Percentages have been rounded
Thank you!

Ed Newton
Research & Materials Manager
SoCalGas
Office: 213-244-4238
ENewton@semprautilities.com