CH4 Connections
What’s Going on Underground?

By Roger C. Carson II
Operating Supervisor, Con Edison
Agenda

- Con Edison Gas System Overview
- Leak Detection
- Leak Response Time
- Gas Leak Backlog Management
- Leak Pinpointing
- So What’s Going on Underground?
- Type 3 Example
- Type 1 Example
- Follow Up
Con Edison System Overview

• System
 – ~ 4300 mi – Distribution
 – ~ 100 mi - Transmission

• System Materials:
 – Cast Iron (~24%)
 – Steel (~30%)
 • Unprotected (~22%)
 • Protected (~8%)
 – Wrought Iron (Less than 1%)
 – Plastic (~46%)

• 1.1 Million Customers
Leak Detection
How we Receive leaks

• Leak Survey
 – Monthly Survey
 – Company/Contractor
 – Heath Detecto-Pak Infrared (DP-IR)
 – Picarro
 – ABB MobileGuard

• Natural Gas Detector

• Public
Leak Detection
How we Receive leaks

• Leak Survey
 – Monthly Survey
 – Company/Contractor
 – Heath Detecto-Pak Infrared (DP-IR)
 – Picarro
 – ABB MobileGuard

• Natural Gas Detector

• Public
Leak Detection
How we Receive leaks

• Leak Survey
 – Monthly Survey
 – Company/Contractor
 – Heath Detecto-Pak Infrared (DP-IR)
 – Picarro
 – ABB MobileGuard

• Natural Gas Detector

• Public
Leak Detection
How we Receive leaks

• Leak Survey
 – Monthly Survey
 – Company/Contractor
 – Heath Detecto-Pak
 Infrared (DP-IR)
 – Picarro
 – ABB MobileGuard

• Natural Gas Detector

• Public
Leak Detection (cont.)
Public Awareness Campaigns

Don’t assume someone else will make the call.

Gas leaks can create fires and explosions.

Learn More
Leak Detection (cont.)

Incoming Leak Source

- Public: 63%
- Company: 37%
Leak Response Time

- 30 min response
- # calls
Gas Leak Backlog Management

![Graph showing the decline in leaks from 1992 to 2018](image-url)
Gas Leak Backlog Management (cont.)

Average time to Repair

System Averages

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>2A</th>
<th>2M</th>
<th>3</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>25</td>
<td>18</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>2A</td>
<td>35</td>
<td>25</td>
<td>18</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>2M</td>
<td>38</td>
<td>107</td>
<td>89</td>
<td>48</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>89</td>
<td></td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>25</td>
<td>18</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>2A</td>
<td>35</td>
<td>25</td>
<td>18</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>2M</td>
<td>38</td>
<td>107</td>
<td>89</td>
<td>48</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>89</td>
<td></td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Grand Total</td>
<td>42</td>
<td>41</td>
<td>22</td>
<td>34</td>
<td>22</td>
</tr>
</tbody>
</table>
Gas Leak Backlog Management (cont.)
Multi-Faceted Approach

Prevention
- Efforts:
 - Main replacement program leak prone pipe
 - One-call, Dig safe
 - Training
 - Work coordination with city utilities

Detection
- Efforts:
 - *Monthly* mobile leak survey
 - Public awareness campaigns
 - Residential methane detectors development and deployment

Response
- Efforts:
 - Code MuRRE
 - Make safe
 - Isolation valve installation program
 - Repair Type 3 leaks
Leak Pinpointing
Factors to consider to determine leak source

- Road Conditions
 - Road Composition
 - Soil Type & Moisture
 - Existing Utilities/Crossings
 - Grade
 - Unique Features
 - Vegetation

- Pipe
 - Material
 - Existing Repairs
 - Pressure
 - Cover
 - Odor

- Weather
 - Frost
So What’s Going on Underground?
Wall St and William St
So What’s Going on Underground? (cont.)
Wall St and William St
Type 3 Example
Type 3 Example
Type 3 Example (cont.)

~62'
28%
Type 3 Example (cont.)
Type 3 Example (cont.)

- **Main:**
 - 10" HPST 1971

- **Road Makeup:**
 - Asphalt
 - Concrete
 - Earth
Type 3 Example (cont.)

• Main:
 – 10” HPST 1971

• Road Makeup:
 – Asphalt
 – Concrete
 – Earth
Type 3 Example (cont.)
Type 3 Example (cont.)

- **Main:**
 - 10” HPST 1971

- **Road Makeup:**
 - Asphalt
 - Concrete
 - Earth

- **Reason for Leak:**
 - Corrosion

- **Repair:**
 - Fullseal Clamp
Manhole 11%
TYPE 1 Example
Type 1 Example (cont.)

Potable Water

Manhole 11% Sewer

Natural Gas

Potable Water
Type 1 Example (cont.)
Type 1 Example (cont.)

Sustained ~60's
Type 1 Example (cont.)

• Main:
 – 16” MPCI 1917

• Road Makeup:
 – Asphalt
 – Concrete
 – Earth/Rock

• Reason for Leak:
 – Bell & Spigot Joint

• Repair:
 – Encapsulation
Type 1 Example (cont.)

Readings Clear

Potable Water

Natural Gas

Sewer
Type 1 Example (cont.)

Sustained Readings
Type 1 Example (cont.)

• Main:
 – 6” LPCI 1904
 • 1” Steel Riser

• Road Makeup:
 – Asphalt
 – Concrete
 – Earth/Rock

• Reason for Leak:
 – Corrosion on Riser

• Repair:
 – Replace Riser
Type 1 Example (cont.)
Follow Up

• Type 1, 2A/M, 2’s require a recheck of test points
• After 14 days within 30
• GDS does the recheck