Introduction to U.S. LNG Supply Chain and Infrastructure

GREat Seminar
LNG 17

Thomas Quine
President
Northstar Industries, LLC
Presentation Segments

1. U.S. LNG Supply and Supply Chain
2. Current, Planned, and Developing LNG Infrastructure
3. Conclusion

Appendix

A. Source and End Use Major Components
U.S. Gas Supply Summary

- 23.5 TCF/Y Non-linear Use
- 20 TCF is produced domestically (The oil market is almost 2X the NG market; equivalent to approximately 40 TCFY of NG)
- 3 TCF Imported from Canada and declining.
- Approximately 100 LNG Facilities in US; 37 located in Northeast.
- 8 Marine Import Terminal in the US.
- Approximately 100 BCF of LNG Storage in US.
- Approximately 3.5 TCF of Underground Storage in US.
- Approximately 400 gas storage fields in US.
- Gas costs per MMBTU: approximately $3.33 (Henry Hub: February 2013)
EIA Projected Energy Spread
Measured in Price Per MMBtu

Conclusion: the projected spreads will sustain a growing off pipeline LNG/CNG marketplace
Big Picture Potential

2012 U.S. Liquid Fuels Consumption by Sector
(quadrillion Btus)
U.S. Natural Gas Supply Chain: Pre Shale

LNG Import

Production

Interstate Pipeline

LDC Satellite Peakshaving

Local Distribution Company Tap

Local Distribution Company
U.S. Natural Gas Supply Chain: Post Shale
Presentation Segments

1. U.S. LNG Supply and Supply Chain
2. Current, Planned, and Developing LNG Infrastructure
3. Conclusion

Appendix

A. Source and End Use Major Components
Approx. 100 LNG Facilities; Mostly LDC Peaking Plants

Marine Terminal - Export (1)
Marine Terminal - Import (4)
Storage (with liquefaction) (57)
Storage (without liquefaction) (39)
Stranded Utility (5)
Vehicular Fuel (2)
Nitrogen rejection unit or other special processing (5)

Stranded Utility: A stranded local utility system is typically very small and too far from the pipeline grid to be economically connected.

Nitrogen Rejection Unit: At NRU facilities, the entire gas stream is liquefied to remove impurities then regasified and sent on as pipeline-quality gas.
North American LNG Import/Export Terminals

Proposed/Potential

Import Terminal

PROPOSED TO FERC
1. Robbinston, ME: 0.5 Bcf/d (Kestrel Energy - Downeast LNG)
2. Astoria, OR: 1.5 Bcf/d (Oregon LNG)
3. Corpus Christi, TX: 0.4 Bcf/d (Cheniere - Corpus Christi LNG)

POTENTIAL U.S. SITES IDENTIFIED BY PROJECT SPONSORS
4. Offshore New York: 0.4 Bcf/d (Liberty Natural Gas)

Export Terminal

PROPOSED TO FERC
5. Freeport, TX: 1.8 Bcf/d (Freeport LNG Dev/Freeport LNG Expansion/FLNG Liquefaction)
6. Corpus Christi, TX: 2.1 Bcf/d (Cheniere - Corpus Christi LNG)
7. Coos Bay, OR: 0.9 Bcf/d (Jordan Cove Energy Project)
8. Lake Charles, LA: 2.4 Bcf/d (Southern Union - Trunkline LNG)
9. Hackberry, LA: 1.7 Bcf/d (Sempra – Cameron LNG)
10. Cove Point, MD: 0.75 Bcf/d (Dominion – Cove Point LNG)
11. Astoria, OR: 1.30 Bcf/d (Oregon LNG)
12. Lavaca Bay, TX: 1.38 Bcf/d (Exelon Liquefaction)
13. Elba Island, GA: 0.5 Bcf/d (Southern LNG Company)
14. Sabine Pass, LA: 1.3 Bcf/d (Sabine Pass Liquefaction)
15. Lake Charles, LA: 1.07 Bcf/d (Magnolia LNG)

PROPOSED CANADIAN SITES IDENTIFIED BY PROJECT SPONSORS
16. Kitimat, BC: 0.7 Bcf/d (Apache Canada Ltd.)
17. Douglas Island, BC: 0.25 Bcf/d (BC LNG Export Cooperative)

POTENTIAL U.S. SITES IDENTIFIED BY PROJECT SPONSORS
18. Brownsville, TX: 2.8 Bcf/d (Gulf Coast LNG Export)
19. Pascagoula, MS: 1.5 Bcf/d (Gulf LNG Liquefaction)
20. Sabine Pass, TX: 2.6 Bcf/d (ExxonMobil – Golden Pass)
21. Plaquemines Parish, LA: 1.07 Bcf/d (CE FLNG)
22. Cameron Parish, LA: 0.16 Bcf/d (Waller LNG Services)
23. Ingleside, TX: 1.09 Bcf/d (Pangea LNG (North America))
24. Cameron Parish, LA: 0.20 Bcf/d (Gasfin Development)

U.S. – MARAD/COAST GUARD
25. Gulf of Mexico: 3.22 Bcf/d (Main Pass - Freeport-McMoRan)

POTENTIAL CANADIAN SITES IDENTIFIED BY PROJECT SPONSORS
26. Prince Rupert Island, BC: 1.0 Bcf/d (Shell Canada)
27. Goldboro, NS: 0.67 Bcf/d (Fluoride Energy Canada)
28. Kitimat, BC: 2.0 Bcf/d (LNG Canada)

As of March 20, 2013

Office of Energy Projects
Off Pipeline LNG Model

Project Components:
- Source Location Siting
- Permitting
- Design
- Pipeline Interconnect
- Gas Marketing
- Prefab Components & Construction
- Liquefaction
- Truck Loading
- End User Facilities Permitting & EPC
- Logistics
- Billing
- O&M
Presentation Segments

1. U.S. LNG Supply and Supply Chain
2. Current, Planned, and Developing LNG Infrastructure
3. Conclusion

Appendix
A. Source and End Use Major Components
Conclusion: the projected spreads will sustain a growing off pipeline LNG/CNG marketplace
Presentation Segments

1. U.S. LNG Supply and Supply Chain
2. Current, Planned, and Developing LNG Infrastructure
3. Conclusion

Appendix

A. Source and End Use Major Components
LNG Source Site Major Components

Liquefaction & Storage

Truck Loading
Three Major Types of LNG Facilities

1. Marine Terminals (Import or Export)
 - Ship Loading or Unloading
 - On-Site Storage
 - Liquefaction or Vaporization
 - Truck Loading

2. Peak-Shaving
 - Liquefaction or Truck Unloading
 - On-Site Storage
 - Vaporization
 - Truck Loading

3. Base-Load
 - Liquefaction or Truck Unloading
 - On-Site Storage
 - Vaporization
 - Truck Loading
Other Types of LNG Facilities

1. Vehicular Fueling
 - Truck Unloading or Liquefaction
 - On-Site Storage
 - Vehicle Fueling

2. Stranded Gas Reserves
 - Liquefaction
 - On-Site Storage
 - Truck Loading

3. Land Fill Gas
 - Liquefaction
 - On-Site Storage
 - Truck Loading
Types of Liquefaction Systems

- Natural Gas Expander
- Cascade Refrigeration
- Mixed Refrigerant
- Nitrogen Recycle
Two Main Types of LNG Storage Tanks

1. Field Erected (API-620 Appendix Q):
 - 1,000,000 to 42,000,000 Gallons (3,800 to 160,000 Cubic Meters)
 - 0.5 to 2 psig Design Pressure
 - Pre-Stressed Concrete
 - Single Containment (9% Nickel Steel Inner Tank & Carbon Steel Outer Tank)
 - Full Containment (9% Nickel Steel Inner Tank & Concrete Outer Tank)
 - External or Internal Sendout Pumps

2. Shop Fabricated (ASME):
 - 30,000 to 70,000 Gallons (113.5 to 265 Cubic Meters)
 - 70 to 250 psig Design Pressure
 - 9% Nickel Steel Inner Tank & Carbon Steel Outer Tank
 - Horizontal or Vertical Configuration
 - Above Ground or Buried
 - Differential Pressure Sendout or External Sendout Pumps
LNG End Use Site Major Components

Storage

Truck Unloading

Odorant

Remote Heat or Ambient Vaporizers
Types of Vaporizers

- Direct Fired
- Indirect Fired Water Bath
- Indirect Fired Submerged Combustion
- Ambient Heat
- Remote Heated Shell and Tube
- Remote Heated Falling Film
- Open Rack Seawater