Technical and Operational Innovation for Onshore and Floating LNG

Jostein Pettersen, Statoil

Co-authors:
Ø Nilsen, S Vist, L E Noreng Giljarhus,
A O Fredheim, K Aasekjær, B O Neeraas

19 April 2013
Outline

Snøhvit and Hammerfest LNG

Floating LNG – a new frontier

Technology Development and Innovation

Recent gas discoveries

Conclusion
Snøhvit
Snøhvit

Facts:
- Discovered: 1981 – 84
- Water depth: 250 – 340 m
- Distance to shore: 140 km
- Gas in place (GIP): 317 GSm³
- Recoverable reserves: 193 GSm³
- Condensate: 34 MSm³

Owners:

<table>
<thead>
<tr>
<th>Owner</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statoil ASA (Operator)</td>
<td>36.79%</td>
</tr>
<tr>
<td>Petoro AS</td>
<td>30.00%</td>
</tr>
<tr>
<td>Total E&P Norge AS</td>
<td>18.40%</td>
</tr>
<tr>
<td>GDF Suez Norge AS</td>
<td>12.00%</td>
</tr>
<tr>
<td>RWE Dea Norge AS</td>
<td>2.81%</td>
</tr>
</tbody>
</table>
Field development concept

• Subsea templates
• Remote operation of subsea system
• Multiphase pipeline to shore
• Onshore gas processing and liquefaction
• Capacity 4.3 Mtpa LNG, plus Condensate and LPG
• Reinjection of CO$_2$ from feed gas (ca 5% CO2 content)
Snøhvit
Process barge in Cadiz, Spain
In-docking of process barge
Extending current skills
Combining the experience

Snøhvit LNG - Hammerfest
- Process facilities built on floating barge – an FLNG predecessor
- Compact layout
- Modularized and prefabricated facilities

Global floating production operations
- Floating production units in operation worldwide
- Offshore offloading in harsh conditions
- Gas processing and acid gas removal on floating unit
Snøhvit technology learning
Supporting FLNG development

- Snøhvit field development and Hammerfest plant – a full LNG value chain
- Direct feed to LNG plant from subsea wells
- Use of LM6000 aero derivative gas turbines
- Reinjection of CO$_2$ from feed gas
- Mixed refrigerant liquefaction process with sea water cooling
- Operation in harsh environment
Statoil FLNG concept development history

<table>
<thead>
<tr>
<th>Concept</th>
<th>Capacity (Mtpa)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelp Deep</td>
<td>4</td>
<td>1985</td>
</tr>
<tr>
<td>Fylla/Snøhvit</td>
<td>5</td>
<td>1986</td>
</tr>
<tr>
<td>NnwaDoro</td>
<td>6-8</td>
<td>1987</td>
</tr>
<tr>
<td>Shtokman</td>
<td>3 x 5</td>
<td>1988</td>
</tr>
<tr>
<td>NnwaDoro</td>
<td>6 (incl oil)</td>
<td>1989</td>
</tr>
<tr>
<td>Snøhvit</td>
<td>3</td>
<td>1990</td>
</tr>
<tr>
<td>NnwaDoro</td>
<td>6</td>
<td>1991</td>
</tr>
<tr>
<td>Generic/Angola</td>
<td>1</td>
<td>1992</td>
</tr>
<tr>
<td>Generic HLG</td>
<td>1.5</td>
<td>1993</td>
</tr>
<tr>
<td>Feasibility</td>
<td>2.5</td>
<td>1994</td>
</tr>
<tr>
<td>Pre-FEED</td>
<td>3.3</td>
<td>1995</td>
</tr>
</tbody>
</table>

Note: Years represent the years of development for each concept.
Statoil FLNG

- Study phases completed
 - Feasibility
 - Concept / pre-FEED
- Varying feed gas composition
- DMR liquefaction process with mechanical compressor drivers
- Side-by-side or tandem offloading
- Developed in cooperation with major engineering contractor
- Supplier group participation

Statoil FLNG, base concept

LNG Capacity	3.0 - 3.5 Mtpa
Overall length	425 m
Beam	65 m
LNG storage	225 000 – 275 000 m³
Technology to enable efficient and reliable FLNG

Acid gas removal
• Extensive technology qualification
• Safeguarding solution can be implemented

LNG offloading systems
• Tandem and side by side system developments

Deep sea water intake
• Riser system for cold deep water intake
• Technology development and qualification for 400+ m intake depth
Operational developments – Hammerfest LNG

Process optimization

• Optimization of operational parameters of Linde MFC liquefaction process with three MR circuits and integrated scrub column
• Use of detailed process model for data reconciliation and process optimization

Reduced start-up flaring

• Use of vaporized LNG as heat sink during controlled cool-down of cryogenic equipment
• Alternative to feed gas expansion
• Reduced start-up time and CO\textsubscript{2} emissions

![Graph showing CO\textsubscript{2} emissions over time]
Tanzania gas discoveries

- Three high impact discoveries made offshore Tanzania in 2012-2013
- Recoverable gas volumes in the range of 10-13 Tcf (280-370 GSm^3) brings further robustness to a potential LNG project
- Statoil operates the license on Block 2 on behalf of Tanzania Petroleum Development Corporation (TPDC)
- Statoil has a 65% working interest, with ExxonMobil holding the remaining 35%
- Recoverable volumes in Block 2 will support building of 1-2 onshore LNG trains
Conclusion

• The Snøhvit offshore field development and realization of the Hammerfest LNG plant has been a pioneering project for Statoil in terms of technology, project execution, location/environment, and operations.

• FLNG is a new technology frontier - emerging as a commercially attractive solution for many offshore gas fields.

• Partnerships become even more important to develop gas resources and manage risk, especially in frontier areas.

• Statoil builds on extensive offshore and onshore experience to realize new LNG projects.
Crossing energy frontiers
Statoil is an international energy company with operations in 36 countries. Building on 40 years of experience from oil and gas production on the Norwegian continental shelf, we are committed to accommodating the world's energy needs in a responsible manner, applying technology and creating innovative business solutions.

Statoil is headquartered in Norway with 21,000 employees worldwide, and is listed on the New York and Oslo stock exchanges. More information on www.statoil.com