A HIGH CAPACITY FLOATING LNG DESIGN

Barend Pek General Manager Shell LNG Development
Harry van der Velde Manager Shell Floating LNG Development

Shell Global Solutions International B.V.

LNG17, HOUSTON, APRIL 19, 2013
DEFINITIONS AND CAUTIONARY NOTE

Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. In this presentation, joint ventures and associates may also be referred to as “equity-accounted investments”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect (for example, through our 23% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2012 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation. [insert date]. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.
ENERGY FUTURE BY 2050

RISING ENERGY DEMAND, SUPPLY PRESSURE, CLIMATE CHANGE

- 9 billion people; up to 75% living in cities
- 2 billion vehicles; 800 million at the moment
- 3-4 times as rich as today as population in developing countries shifts from poverty to middle class
- More than double the energy: Supplying 55% more energy than today. At the same time having to reduce emissions from CO₂ and GHG
- Half the energy intensity: Using half the energy as now to produce each dollar of wealth
- 5-10 times as much: Energy from renewable sources will be 5-10 times as much as it is today
LEADERSHIP ACROSS LNG VALUE CHAIN

50 YEARS OF EXPERIENCE IN LNG

EXPLORATION & PRODUCTION
One of the world’s largest gas producers

LIQUEFACTION
Largest IOC supplier of LNG

LNG SHIPPING
Largest ship operator

REGAS, PIPELINES, STORAGE
Strategic positions, active portfolio management

MARKETING & TRADING
Global positions and capabilities

TECHNOLOGY
Leader in LNG and gas conversion technologies

Building world-class partnerships
FLNG:
HOW DOES IT WORK?

Subsea gas gathering from wellheads

FLNG FACILITY
moored near gas field

Off-loading onto standard LNG carriers
SHELL’S FLNG JOURNEY

MID 1990s-2008
EARLY THINKING AND DESIGN EVOLUTION

2009-2010
TSC CONSORTIUM PRELUDE FEED

2011-NOW
FID AND EXECUTION
SHELL FLNG:
PROVEN TECHNOLOGIES IN INNOVATIVE COMBINATIONS
INTEGRATED CONCEPT, REPLICABLE

Over 15 years identifying, understanding and addressing offshore challenges:
- Extensive physical modeling of technical challenges
- Development of numerical modeling techniques
- Completely integrated from reservoir to product off take
- Safety has driven the layout, and is on par with modern offshore facilities
- Roll and pitch less than for a typical FPSO
- Reliable supply – availability is on par with onshore plants
ECONOMIC DRIVERS
FOR FLNG PROJECTS

source: Shell Analysis
MATURE DESIGN
WITH A CAPACITY STEP UP

- Solution for lean gas fields
- Higher capacity
- Lower Unit Technical Cost
DESCRIPTION OF SHELL’S FLNG LEAN CONCEPT

Feed Gas from Turret → FEED GAS RECEIVING → GAS TREATING & CONDITIONING → CS+ REMOVAL → FUEL GAS

- Vent/CCS
- Water Make-up

- Fuel Gas → LIQUEFACTION (STRING 1) → LIQUEFACTION (STRING 2) → REFRIGERANT STORAGE → LNG STORAGE

- Ethane & Propane Import → LNG LOADING → LNG Export

- Lean MEG
- Produced Water
- Condensate Product

- Condensate STABILISATION
- CONDENSATE STORING
- CONDENSATE REGENERATION
- CONDENSATE LOADING

Copyright of Royal Dutch Shell plc.
■ Builds upon knowledge and experience of Prelude
■ Swivel stack permits fluid transfer from subsea system to topsides
■ Resists loads under the most extreme weather conditions
OLAF
SIDE BY SIDE OFF-LOADING SYSTEMS

- Co-development Shell – FMC
- OLAF - Offshore Loading Arm Footless
- ATOL - Articulated Tandem Offshore Loader - for more severe conditions

Outboard arm counterweight

In/Out - counterweight board arm assembly

Swivels

Slew bearing
CRITICAL SUCCESS FACTORS

INTEGRATED FLNG DEVELOPMENT
- Suitable upstream project
- Seamless integration with FLNG facility
- Continuous focus on cost/value
- Low environmental footprint

LNG OFF-TAKE
- Availability
- Buyer confidence
- Project investor

SUSTAINABLE PERFORMANCE

Execution and Operating capability
BRINGING NEW ENERGY SOURCES TO MARKET

- Successfully executing the Prelude project
- Developing further partnerships and plays for future projects
- Continuing to develop our FLNG programme:
 - A global integrated FLNG programme team
 - Design development work to cater for larger and leaner gas fields
- FLNG Lean designed on the same platform as Prelude