Integration of Major Liquefaction Units within Existing Import Terminals
By: Mona Setoodeh
CH·IV International
April, 2013
Overview

- North American LNG Export
- Facility Integration
- Addition of Liquefaction Trains
- Associated Hazards
- Modification of Existing Components
- Other Considerations
North American LNG Export

North American LNG Import/Export Terminals

Proposed/Potential

Import Terminal
PROPOSED TO FERC
1. Robinston, ME: 0.5 Bcf/d (Kestrel Energy - Downeast LNG)
2. Astoria, OR: 1.5 Bcf/d (Oregon LNG)
3. Corpus Christi, TX: 0.4 Bcf/d (Cheniere - Corpus Christi LNG)
POTENTIAL U.S. SITES IDENTIFIED BY PROJECT SPONSORS
4. Offshore New York: 0.4 Bcf/d (Liberty Natural Gas)

Export Terminal
PROPOSED TO FERC
5. Freeport, TX: 1.8 Bcf/d (Freeport LNG Dev/Freeport LNG Expansion/FLNG Liquefaction)
6. Corpus Christi, TX: 2.1 Bcf/d (Cheniere - Corpus Christi LNG)
7. Coos Bay, OR: 0.9 Bcf/d (Jordan Cove Energy Project)
8. Lake Charles, LA: 2.4 Bcf/d (Southern Union - Trunkline LNG)
9. Hackberry, LA: 1.7 Bcf/d (Sempra - Cameron LNG)
10. Cove Point, MD: 0.75 Bcf/d (Dominion – Cove Point LNG)
11. Astoria, OR: 1.30 Bcf/d (Oregon LNG)
12. Lavaca Bay, TX: 1.38 Bcf/d (Exocelerate Liquefaction)
13. Elba Island, GA: 0.5 Bcf/d (Southern LNG Company)
14. Sabine Pass; LA: 1.3 Bcf/d (Sabine Pass Liquefaction)
15. Lake Charles, LA: 1.07 Bcf/d (Magnolia LNG)

PROPOSED CANADIAN SITES IDENTIFIED BY PROJECT SPONSORS
16. Kitimat, BC: 0.7 Bcf/d (Apache Canada Ltd.)
17. Douglas Island, BC: 0.25 Bcf/d (BC LNG Export Cooperative)

POTENTIAL U.S. SITES IDENTIFIED BY PROJECT SPONSORS
18. Brownsville, TX: 2.8 Bcf/d (Gulf Coast LNG Export)
19. Pascagoula, MS: 1.5 Bcf/d (Gulf LNG Liquefaction)
20. Sabine Pass, TX: 2.6 Bcf/d (ExxonMobil - Golden Pass)
21. Plaquemines Parish, LA: 1.07 Bcf/d (CE FLNG)
22. Cameron Parish, LA: 0.16 Bcf/d (Waller LNG Services)
23. Ingleside, TX: 1.09 Bcf/d (Range LNG (North America))
24. Cameron Parish, LA: 0.20 Bcf/d (Gaslin Development)

U.S. - MARAD/COAST GUARD
25. Gulf of Mexico: 3.22 Bcf/d (Main Pass - Freeport-McMoRan)

POTENTIAL CANADIAN SITES IDENTIFIED BY PROJECT SPONSORS
26. Prince Rupert Island, BC: 1.0 Bcf/d (Shell Canada)
27. Goldboro, NS: 0.67 Bcf/d (Pleridoe Energy Canada)
28. Kitimat, BC: 2.0 Bcf/d (LNG Canada)

As of March 20, 2013

Office of Energy Projects
US Facility Conversion Projects

- Sabine Pass LNG Terminal, LA
- Freeport LNG Terminal, TX
- Trunkline LNG Lake Charles Terminal, LA
- Dominion Cove Point LNG, MD
- Cameron LNG, LA
- Southern LNG Company, GA
- Oregon LNG Terminal, OR
 - Design Modification

Image Courtesy of Cameron LNG
From Import to Bi-Directional

- Aiming to Realize Potential Benefits of The Shifting LNG Market

- Advantages:
 - Utilizing Available Equipment And Infrastructure
 - Storage Tanks, Marine Loading/Unloading Facilities, etc.

- Challenges:
 - Regulatory Compliant Siting
 - Integration within Existing Systems
 - Isolation and Long-Term Maintenance of Some Existing Equipment
Facility Integration

- Need to Identify:
 - New Equipment and Units
 - Pretreatment
 - Liquefaction
 - NGL Extraction/N₂ Rejection/etc.
 - Supporting Utilities & Auxiliaries
 - Hazard Detection and Mitigation Systems
 - Components Requiring Modification or Replacement
 - Systems & Components Not Further Used
Addition of Liquefaction Trains
Liquefaction Unit

- Typical Train Components
 - Feed gas booster compression
 - Refrigerant compression
 - Series of heat exchangers - Process Cooling
 - Cryogenic heat exchanger
 - LNG and Refrigerant let-down system
 - NGL extraction and potentially fractionation
 - Flare Systems
Associated Hazards

- Hazards Associated with LNG
- Hazards Associated with Hydrocarbon Refrigerants and NGLs in Process Loops
- Hazards Associated with Storage of Hydrocarbon Refrigerants and NGLs
- Hazards Associated with Chemicals
 - Amine Solutions
 - Heat Transfer Fluids
 - Aqueous Ammonia (potential)
Implications of Hazards

- Safety
- Siting Facilities
 - Regulatory Compliance
 - More Real Estate Than What Is Required for Equipment Installation
- Insurability
- Project Financing
Hazards Associated with LNG

- Common to Import and Export
- Vapor Dispersion
 - Function of:
 - Flow Rates of LNG in Pipelines
 - Dominant LNG Flow Rate & Pipe Length: Typically Loading/Unloading Lines
 - Loading Flow Rate & Pipeline Length Typically Remain The Same
 - Vapor Dispersion Modeling Is Required
 - Modifications, Tie-Ins, etc.
 - Demonstrate Compliance with Flammable Gas Dispersion Exclusion Zones
Hazards Associated with LNG

- Spill Containment Systems
 - Need To Be Re-Evaluated and Potentially Extended
 - LNG Rundown To The Tank(s)
 - Single Accidental Leak Source

- Demonstrate Compliance
 - Flammable Gas Dispersion Exclusion Zones
 - Prevent Thermal Flux Beyond Allowable Limits
 - Defined by 49 CFR Part 193 and NFPA 59A for land-based projects located in the U.S.A.
Other Hydrocarbon Hazards

- Liquefaction Introducing Additional Components to Import Facilities
 - Hydrocarbon Refrigerant Components
 - Propane – Storage, Pure
 - Ethane/Ethylene – Storage, Pure
 - Mixed Refrigerant – Mixed Component
 - NGLs
Other Hydrocarbon Hazards

- Siting Required Analyses
 - Vapor Dispersion Modeling
 - Jetting And Flashing Scenarios
 - Refrigerant and NGL
 - Single Accidental Leakage Source
 - Possible Liquid Spills
 - Refrigerant and NGL
 - Design Spills
 - Refrigerant and NGL
 - Single Accidental Leakage Source
 - Possible Liquid Spills
 - Refrigerant and NGL
 - Design Spills

- Overpressure Radii
 - From Ignition of The Vapor Clouds
 - Demonstrate No damaging effects To The Public
FLACS 3-D Plant Model
FLACS 3-D Plant Model
Refrigerant Jetting and Flashing
Overpressure Modeling
Overpressure Modeling Result
Reduced Overpressure Isopleth by Reducing Vapor Release
Onsite Refrigerant Storage

- Required Due to Expected Depletion of Refrigerants In The Refrigeration Loop

- Size of Storage Determined by:
 - Leak Rates Through The System
 - Number of Days The Owner Chooses to Keep Inventories On-Hand
 - Facility’s Proximity to Refrigerant Distribution Sources
 - Acceptable Trucking Traffic
Onsite Refrigerant Storage

- An analysis to Determine Potential for And Consequences of a Boiling Liquid Expanding Vapor Explosion (BLEVE) Associated with Refrigerant Storage Vessels May Be Required
 - Demonstrate Siting Compliance with Requirements of 49 CFR 193 and NFPA 59A – U.S. Facilities
- Potential Mitigation Measures:
 - Mounding
 - Others
Components Modifications and Replacements
Modifications and Replacements

- LNG In-Tank Pumps
 - Import Terminals
 - Lower Flow Rates
 - Discharge Pressure Depending on Plant Layout, Configuration and Hydraulics
 - Export Facilities
 - Higher Flow Rate
 - Moderate Discharge Pressures

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>In-Tank Pump Sendout Rate, (m³/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNG Import Terminal, 1 to 2 Bscfd natural gas sendout</td>
<td>1,875 to 3,750</td>
</tr>
<tr>
<td>Natural Gas Liquefaction and LNG Export Facilities</td>
<td>10,000 to 12,000</td>
</tr>
</tbody>
</table>
Modifications and Replacements

- Considerations for In-Tank Pump Replacement
 - Investigate the Limits of Expanding Operating Range for Existing Pumps
 - Determine the Number of Pumps to be Replaced
 - Contractual Agreements
 - Operability
 - Redundancy for Various Operating Modes
Modifications and Replacements

- Considerations for In-Tank Pump Replacement
 - Number and Size of Existing Columns
 - Can Limit Facility’s Maximum LNG Transfer Rate
 - Electrical Demand
 - Size of Discharge Nozzles, Type of Foot Valve, Etc.
Modifications and Replacements

- LNG Transfer System
 - Flow Rate
 - Transfer Piping
 - Transfer Arms
 - Flow Direction - LNG
 - Flow Direction - Return Vapor
Modifications and Replacements

- **Vapor Handling System**
 - **Import Terminals:**
 - Excess BOG Is Re-Condensed, Vaporized and Directed to Sendout Pipeline
 - Components: BOG Header, Onshore BOG Compressor, BOG Recondenser
 - **Export Facilities**
 - Excess BOG is compressed and Routed Upstream of Liquefaction Train(s) And / Or Blended In The Fuel System
 - Components: BOG Header, Dock BOG Blower, Onshore BOG Compressors
Modifications and Replacements

- Potential Vapor Handling System Modifications
 - Onshore BOG Compressors
 - Re-Evaluation/Optimizing Existing Capabilities
 - Addition of BOG Compressors
 - Routing Excess BOG Upstream of Liquefiers
 - Dock Blower
 - Addition of Vapor Blower(s) At The Jetty
Vapor Handling

- Design Objective: Minimizing BOG Generation
 - Lower Storage Tank Operating Pressure Compared to Import and Regasification Operations
 - Relative Saturation Pressure: LNG in Storage Tank vs. LNG Carrier
 - LNG Product Condition Entering Storage Tank(s): Slightly Subcooled
 - Minimizing Heat Leak Throughout The System:
 - Vacuum Insulated Piping vs. Mechanically Insulated Piping
 - Proper Design of In-Tank Pumps
Modifications and Replacements

- **Flare System**
 - Significantly Smaller Loads in Import Facilities for Equivalent Gas Throughput Quality
 - Typically One Flare in Import Terminals
 - Typically Two to Three Flares in Export Facilities
Export Facility Flares

- Warm (Wet) Flare or Alternatively An Atmospheric Vent Stack
 - Dedicated to Relief Systems Containing Heavy Hydrocarbons
- Cold or Dry Flare
 - Dedicated to Relief Systems Containing Light Hydrocarbons
- Optional Marine Flare or Low Pressure Flare
 - Disposal of BOG or Other Low Pressure Gases, Not Manageable by The Facility
 - Unacceptable Composition
 - Warm Temperatures/High Flow Rates
 - Gassing-In or Cooling LNG Carriers
Flare Options

- Elevated Flare
 - Smaller Equipment Footprint
 - Significantly Tall Structure

SEGAS LNG Plant,

Sakhalin LNG Plant,
Flare Options

- Ground Flare
 - Larger Equipment Footprint
 - Short Structure

Burners Distribution in a Multipoint Ground Flare

Darwin LNG Ground Flare System

Image Courtesy of Zeeco
Other Considerations

- LNG Storage Tank
 - Relief Studies
 - Roll-Over Assessment
 - Piping Hydraulic and Stress Analyses
 - Fulfillment of Existing Contractual Obligations
- Electrical Distribution System
- Control System
Summary

- Trend of The Day
- Advantages and Challenges
- Innovative Engineering Solutions to Overcome Hurdles
Thank You

Questions?

Mona Setoodeh
CH·IV International
msetoodeh@ch-iv.com