LNG INCIDENT IDENTIFICATION
UPDATED COMPILATION AND ANALYSIS BY THE
INTERNATIONAL GROUP OF LNG IMPORTERS (GIIGNL)

By: Anthony Acton, ActOn LNG Consulting,
Deborah Brown, GL Noble Denton and
Pierre Langry, Dunkerque LNG

April 17, 2013
Legal Notice

The information presented here represents the outcome of a significant study undertaken by a group of LNG Importing Companies over the past twenty years. The information is intended to be useful for the LNG Industry to help to improve design and operations and is provided in good faith. However, GIIGNL, any of its members and the authors of this presentation and the paper on which it is based disclaim any direct or indirect liability as to information contained therein for any industrial, commercial or other use whatsoever.
The LNG Importer’s Group Study…

- A study by the Technical Study Group of GIIGNL

<table>
<thead>
<tr>
<th>GDF Suez (secretariat)</th>
<th>GAIL</th>
<th>Sempra LNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG Group</td>
<td>Gasunie</td>
<td>Shell Global Solutions</td>
</tr>
<tr>
<td>Chinese Petroleum</td>
<td>GDF Suez Energy NA</td>
<td>Southern LNG</td>
</tr>
<tr>
<td>DEPA</td>
<td>GNL Italia</td>
<td>Statoil</td>
</tr>
<tr>
<td>Dragon LNG</td>
<td>Kansai Electric Power</td>
<td>STREAM LNG</td>
</tr>
<tr>
<td>Dunkerque LNG</td>
<td>Kogas</td>
<td>Tokyo Electric Power</td>
</tr>
<tr>
<td>ELENGY</td>
<td>Grain LNG</td>
<td>Tokyo Gas</td>
</tr>
<tr>
<td>ENAGAS</td>
<td>Osaka Gas</td>
<td>Total</td>
</tr>
<tr>
<td>E.ON Ruhrgas</td>
<td>Petronet LNG</td>
<td>Vopak LNG</td>
</tr>
<tr>
<td>FLUXYS LNG</td>
<td>REN Atlantico</td>
<td></td>
</tr>
</tbody>
</table>

- GIIGNL includes the owners and/or operators of nearly all of the world’s LNG import terminals
- GL Noble Denton, ActOn LNG and Dunkerque LNG were responsible for analysis and reporting
...The LNG Importer’s Group Study

- LNG incident data has been collected from all sources:
 - previous studies by GIIGNL
 - recent incidents at Study Group Member’s Terminals
 - public domain information
 - A questionnaire to all GIIGNL Members

- Data collection is anonymous and done regionally: Americas, Europe, Far East

- Routine operational incidents are excluded

- Data reported here covers the total of LNG commercial operations over 3 time periods from 1965-2007 and the survey continues
Categories of Incidents Surveyed

• **Category 1** - Releases of hazardous material: releases of LNG, LPG, NGL, hydrocarbon gases, etc. leading to, or with the potential to lead to, injury to personnel or damage to equipment or buildings on or off site

• **Category 2** – Near misses: incidents involving a hazardous material system where there was no actual release of hazardous material but which had the potential to lead to a Category 1 incident

• **Category 3** – Other incidents of concern: incidents not involving a hazardous material system but which had the potential to lead to a Category 1 incident

The GIIGNL Database contains 328 Incidents in total
Incident Data Analysis by Category

<table>
<thead>
<tr>
<th>Data Period</th>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre '95</td>
<td></td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>95-'00</td>
<td>50%</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>01-'07</td>
<td>30%</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>60%</td>
<td>30%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Releases of hazardous material, near misses and other incidents of concern
Historical Incident Frequencies

<table>
<thead>
<tr>
<th>Period</th>
<th>Incidents</th>
<th>Operating site-years</th>
<th>Frequency (incidents/site-year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965 - 1974</td>
<td>15</td>
<td>44</td>
<td>0.34</td>
</tr>
<tr>
<td>1975 - 1984</td>
<td>52</td>
<td>179</td>
<td>0.29</td>
</tr>
<tr>
<td>1985 - 1994</td>
<td>94</td>
<td>327</td>
<td>0.29</td>
</tr>
<tr>
<td>1995 - 2000</td>
<td>85</td>
<td>191</td>
<td>0.45</td>
</tr>
<tr>
<td>2001 - 2007</td>
<td>82</td>
<td>579</td>
<td>0.14</td>
</tr>
<tr>
<td>Total 1965-2007</td>
<td>328</td>
<td>1320</td>
<td>0.24</td>
</tr>
</tbody>
</table>

There have been on average only 0.24 incidents of all categories per site-year.
Where Incidents Happen

Storage: LNG tanks, in-tank pumps & boil-off gas system
Unloading: LNG ship at berth, jetty & unloading equipment
Send-out: pumps, vaporisers, etc. including any LPG plant
External: equipment outside the control of the LNG terminal
Others: utility & other equipment not included above

Unit Frequencies by Equipment Function

<table>
<thead>
<tr>
<th>Time period</th>
<th>Storage (per million hours)</th>
<th>Unloading (per million unloading hours)</th>
<th>Sendout (per 10^9 m3 of LNG)</th>
<th>External (per million hours)</th>
<th>Others (per million hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre ’95</td>
<td>1.34</td>
<td>176.95</td>
<td>54.15</td>
<td>1.71</td>
<td>2.14</td>
</tr>
<tr>
<td>95-'00</td>
<td>1.64</td>
<td>166.67</td>
<td>60.96</td>
<td>3.31</td>
<td>10.47</td>
</tr>
<tr>
<td>01-'07</td>
<td>1.66</td>
<td>71.28</td>
<td>20.35</td>
<td>0.79</td>
<td>2.56</td>
</tr>
<tr>
<td>All</td>
<td>1.49</td>
<td>132.91</td>
<td>41.47</td>
<td>1.56</td>
<td>3.63</td>
</tr>
</tbody>
</table>

Incidents during LNG unloading functions are the most frequent
Incidents During the Day and Night

Fewer incidents occur during the night than during daytime hours.
Causes of Incidents

• **Immediate Cause (precipitating event)**
 – *Operation* (actions, including maintenance)
 – *Material* (equipment, materials or installation)
 – *External* (anything out of influence of terminal)
 – *Unknown* (Immediate Cause never found)

• **Primary Cause (underlying cause)**
 – *Design/Construction* (design & installation)
 – *Operation/Maintenance* (equipment failure, operator error, poor procedures, poor maintenance)
 – *External* (anything out of influence of terminal)
 – *Unknown* (Primary Cause never found)

Incidents are often due to a Primary Cause different from the Immediate Cause
Immediate Causes of Incidents

“Operation” and “Material” are the most-likely Immediate Causes of incidents
Primary Causes of Incidents

Operation & Maintenance is by far the most-likely Primary Cause of incidents.
Some 60% of all releases are less than 100 kg
Incidents by Gravity of Event

Some 11% of all incidents resulted in explosion, fire or rapid phase transition.

E = Explosion; F = Fire; RPT = Rapid Phase Transition
Earthquakes and Tsunamis

- Earthquakes and tsunamis are considered in the design of LNG Terminals (e.g. NFPA 59A & EN1473)
- In only 3/10 instances of large earthquakes (magnitude > 7) near LNG terminals was there any damage and this was minor with no loss of LNG
- In only 1/3 instances of large tsunamis near LNG terminals was there any damage (Minato, Japan, 2011) where some unpiled structures were washed away. The LNG unloading arms and the inground LNG storage tank were unafffected and there were no injuries to personnel
New Data Collection Methods

• Until 2012 all GIIGNL’s incident data collection has been by individual questionnaires managed by Regional Co-ordinators and supplied to the Study Group in anonymous electronic form for analysis.

• A web-based data collection system allowing operators to enter incident data directly is being implemented in 2013 to improve efficiency. Regional Moderators will still review the entries and seek any clarifications before releasing them to the anonymous database available to GIIGNL Members.
Conclusions…

• Since the commercial LNG import industry began in late 1964, there have been no known instances of significant damage outside the LNG facility at which an incident occurred nor of catastrophic LNG storage tank failure. This study has confirmed these facts.

• A total of 328 incidents of releases of hazardous material, near misses and other incidents of concern have been reported and analysed in this comprehensive study of GIIGNL Member’s facilities from 1965 to 2007.

• Safety has improved overall - data from 2000 onwards show:
 – the frequency of reported incidents to be very low, 0.14 per site year, down from 0.24 previously.
 – 54% of reported incidents involving the release of hazardous material, down from 69% previously.
 – 75% of releases to be less than 100 kg, up from 48% and 64% in the two previous periods.
 – Only 7% of incidents resulting in an explosion, fire or rapid phase transition, down from 11% previously.
...Conclusions...

• Operations and Maintenance are now reported as the main Primary and Immediate causes of incidents

• The main sources of hydrocarbon release are from LNG unloading, storage and sendout equipment with storage contributing most to the tally of larger releases

• Incidents during LNG unloading are the most frequent. However, their frequency has reduced recently and they do not contribute excessively to the total number of incidents because LNG unloading is a relatively infrequent operation at LNG import facilities

• There is an increase in the number of truck-related incidents. This may be due to an increase in trucking activities which may often be outside the control of the terminal
...Conclusions

- Fewer incidents occur during the night than during daytime hours.

- Earthquakes have had little impact on LNG facilities and in only one case has a tsunami caused damage but with no release of LNG and no injuries to personnel.

- The LNG Importer’s Group (GIIGNL) believes that maintaining a comprehensive record of incidents will be useful for the future design and operation of safe LNG facilities. GIIGNL is introducing more-efficient ways of collecting incident data and is committed to maintaining its database up-to-date for the general good of the LNG Industry.

GIIGNL is committed to improving LNG Industry Safety.