the Energy to Lead

Natural Gas Utilization RD&D Overview

CEE Summer Program Meeting May 30, 2013

Paul Armstrong Director of Business Development Gas Technology Institute

GTI Overview

- > Not-for-profit research, with 70 year history
- > Facilities
 - 18 acre campus near Chicago
 - 200,000 ft²,
 28 specialized labs
 - Offices in AL, CA, MA, PA TX, Wash DC
- > Staff of 250
- Market opportunities are creating substantial growth
- > 1,200 patents; 500 products

Offices & Labs

Pilot-Scale Gasification Campus

Energy & Environmental Technology Center

Natural Gas Industry Sponsors

> GTI-led, utility supported, North American collaborative programs targeting residential, commercial and industrial solutions

- > Utilization Technology Development (UTD)
- > Emerging Technology Program (ETP)
- > Federal & State Agencies

Technology Development

Presentation Overview

>Market Drivers and Trends

- >Research Highlights
 - Natural Gas Heat Pump Technology
 - Micro-CHP and CHP
 - Commercial and Industrial Boilers
 - Building America Residential Research Program
- >Demonstration and Deployment Highlights
 - Emerging Technology Program
 - Key Project Updates
 - Technology Highlights

US Natural Gas Supply Revolution

Driving Economic Growth, Gas Demand, Eliminating Imports

Tcf/Year	2000	2012	2020
Total Demand	23.2	25.3	26.8
Total Supply	22.8	25.6	27.1
Import %	16%	6%	0%

US Total Natural Gas Demand

Source: DOE-EIA

- Market Growth:
 - > Power generation
 - > Rebounding Industrial Sector
 - > Transportation (high growth rates)
- Offsetting reliance on coal and oil

A Tale Of Two Markets

Power Generation and Residential Use

Power is far and away largest use of natural gas now in the US.

Continued downward trend in US natural gas use due to efficiency improvements.

Total U.S. Energy Comparison: Residential Sector

Direct natural gas use is a highly efficient option for space and water heating, cooking, and drying.

Home natural gas use can be complemented by solar thermal energy to further lower source energy intensity and sustainability.

Source-Based Water Heating Efficiency Comparison

Pre-commercial gas heat pump water heater

Natural Gas Heat Pump – IntelliChoice Energy Example

- > NextAire Gas engine-driven heat pumps (GHPs) combine high efficiency heating (1.2-1.5 COP) and cooling (0.95-1.2 COP) to offer the potential to reduce operating and lifecycle costs compared to conventional HVAC equipment
 - Aisin/Toyota engine with proven performance and durability
 - Modulating engine speed for better part-load performance
 - Engine heat recovery increases efficiency
 - Variable refrigerant flow (VRF) provides heating and cooling for up to 33 zones
- > Savings potential compared to conventional chiller/boiler equipment
 - Up to 30% reduction in operating costs
 - 80% less electric power consumption
 - Reduced water consumption

Micro CHP Technology Landscape

- > Variety of emerging micro CHP systems (under 50 kW)
 - > Engines, fuel cells, Stirling engines some with promising electric efficiency
 - > Commercial activity greater in Europe & Japan due to higher energy costs, drivers
 - Achieving acceptable first costs a challenge

	0	10	20 System S	30 Size (kW)	40	50	
	0%	Energ	petix, Kingston Dell		Under developme plans for US mark	nt, with ort	
	10% ->	- Maran Clima Inspir	hon, ecopower te Energy, heewal it Energy	N- 2013	Commercially ava abroad, cartifying Commercially ava abroad, may cons	for US Ider US	
Electrical	20% -	- Clear - Plug P	Edge Power, CE5 Power ar, CP4	Domestically (Capatone, C30 Commercially ava within the US man	lable ket	
Efficiency	30% -		•		Veisemann, EM-50 Yanmar, CP25 Veisemann, EM-20 Yanmar, CP10	-	
(UHV)	40% -	GennewBlueGen	 Solid Ox Microture 	ide Fuel Ce rbine	11		
50	50% -	Ceramic Fuel	* Stirling Engine × Organic Rankine Cycle				
	60%	†	 Internal Proton 5 	Combustio	n Iomhrano Eu	ol Coll	

Gas at \$6 to \$10	Atlanta, GA	Helena, MT	Los Angeles, CA	Phoenix, AZ	Tulsa, OK
Single-family BA2010	\$1,740 to \$2,570	\$1,130 to \$1,780	\$2,790 to \$3,560	\$2,410 to \$3,590	\$1,600 to \$2,650
Single-family MaxEE	\$1,470 to \$2,240	\$930 to \$1,620	\$2,510 to \$3,310	\$2,020 to \$3,120	\$1,470 to \$2,340
Single-family Vintage	\$1,880 to \$3,040	\$2,250 to \$2,270	\$3,050 to \$3,980	\$2,800 to \$3,980	\$1,620 to \$2,730
Multi-family by unit	\$1,510 to \$2,180	\$1,020 to \$1,660	\$2,760 to \$3,400	\$2,080 to \$2,870	\$1,230 to \$1,920
Budget Hotel	\$1,580 to \$3,080	\$890 to \$2,190	\$2,960 to \$4,540	\$1,370 to \$3,010	\$970 to \$2,440
Chain Restaurant	\$710 to \$2,330	NA to \$1,760	\$840 to \$3,430	\$850 to \$2,620	NA to \$1,850
Big-box Retail	\$690 to \$2,550	NA - \$1,510	\$2,180 to \$4,080	\$720 to \$2,620	NA - \$1,880
Small Office	\$890 to \$1,800	\$1,120 to \$1,920	\$2,690 to \$3,180	\$720 to \$2,430	\$700 to \$1,510
Multi-family Central	\$880 to \$2,610	NA to \$1,780	\$2,220 to \$4,030	\$900 to \$2,730	NA to \$2,050

Target first cost needed to achieve six-year payback in different US markets

Technology Landscape

Increase Market Penetration

- Marathon ecopower
- Clear Edge CE5
- Yanmar CP4 and CP10

Emerging Technologies

- Climate Energy, freewatt
- CFCL, BlueGen
- M-Cogen, Homeaire
- Plug Power, GenSys Blue
- Inspirit Energy (Disenco)
- Whisper Gen, Whisper Tech
- EC Power, XRGI 15
- Energetix, Kingston Delta
- 2-dozen others

Commercial and Industrial CHP Market Trends

> C&I CHP markets "status quo" over past decade – despite large increases in gas use for power generation (missed opportunity)

Industrial growth could help promote new CHP investments and energy efficiency improvements

> Key issue: resolving long-standing market barriers

Source: DOE EIA Electric Power Annual

Substantial CHP Remaining Potential

Source: Estimates by ICF International and CHP Installation Database developed by ICF International for Oak Ridge National Laboratory and DOE. 2012.

Industrial FlexCHP Power & Steam Package

- > Fully integrated high-efficiency ultra-clean power and flexible steam production
 - NOx emissions below 0.07 lb/MWh (for strict California standards)
 - Power generation using microturbine
 - Waste heat boiler fed with turbine exhaust gas plus low emission supplemental burner

> Variable steam output 85% system efficiency

Steam Systems and Energy Efficiency Improvement Opportunities

Example Boiler Efficiency Improvement Options

Cannon Ultramizer System

- Combines Cannon's HTE and LTE Feedwater Heaters with TMC Technology to provide the ultimate in heat and water recovery
 - Transport Membrane Condenser (TMC) technology recovers Sensible and Latent Heat from flue gas stream
 - Recovers clean water from natural gas burning combustion systems
 - Boiler efficiencies of 95% are possible
 - Reduction in emissions is equal to the reduction in fuel consumption

CANNON ULTRAMIZER SYSTEM

CBW

BOILER

TRANSPORT MEMBRANE

CONDENSER (TMC)

LOW TEMPERATURE ECONOMIZER (LTE)

HIGH TEMPERATURE

ECONOMIZER (HTE)

SOFTENED MAKE-UP

WATER FROM TMC

WATER TO LTE

WATER TO DA

WATER FROM DA

FEEDWATER

Boiler Demand Monitoring Controls

- > Devices that act to minimize unnecessary equipment operation & cycling to save energy
 - Boilers and other equipment
- Manufacturer claims of 10-30% energy savings
 - Limited controlled testing to quantify
 - > NYSERDA/Brookhaven reported 12.9% savings (+/-3.2%) at 13 sites
 - GTI conducting controlled lab testing on gas-fired boiler

18

Sandler

Intellidyne

GTI's Building America Role

Partnership for Advanced Residential Retrofit

- > Giving natural gas an active voice in DOE's Building America Program
- > Midwest region, cold climate focus
 - 1. Seven-state Midwest region with a Chicago "hub"
 - 2. Systems and whole home solutions for cold climate
 - 3. Targeting high potential building stock with opportunities for energy savings AND scalability

Building America PARR Research

- > Laboratory Furnace AFUE vs. Field Measurements at End of Life
 - Field measurements show a reduction in efficiency of 6.4% vs. laboratory testing after adjustment to standard conditions showing the benefits of tune ups. Lab AFUE testing showed no degradation for furnaces operating in the field for more than 20 years

Evaluation of Řetrofit Packages Implemented in Multifamily Buildings

- Research supporting the 15-30% energy savings associated with applying measure packages in vintage multifamily buildings.
- 1. Seal & insulate attics; 2. Steam Distribution
 Systems Balancing and Tuning

> Expert Meetings on Combustion Safety

 The gas industry, the university research community, and the DOE National Labs discussing the current state of combustion safety in the codes and as practiced in the field, and identify further research needs.

DOE PARR website: http://www1.eere.energy.gov/library/default.aspx?page=2&spid=2

Pilot Field Assessment Multi-family Demand DHW Controls

- Demand pump for central domestic hot water systems
- System operates only when there is demand, energy savings from reduced thermal loses in recirculation loop (generally 1 - 3 years ROI before rebates)
- Nicor Gas supporting two demos in Chicago area with complete monitoring, collaborative demos in DTE territory, ETIC territory too
- Initial Nicor Gas results suggest roughly 2,000 therms and 750 kWh per building (roughly 40 units/building), with paybacks well below 2 years
- Project goal is to develop qualitative and quantitative data to support prescriptive program

Natural Gas Industry Collaboration

Emerging Technology Program

A UIL HOLDINGS COMPANY

- > Gas Technology Institute led, utility supported, North American collaborative targeting residential, commercial, and industrial solutions
- > ETP's principle goal is to accelerate the market acceptance of emerging gas technologies Alagasco I. Idea AGI Resources Generation 8. Implementation GEN COMPANY 2. Tech/ Market **CenterPoint**_® 7. Commercia Product Evaluation Introduction Development and Enerav **TE Energ** Commercialization Process 3. Research Initiation 6. Demo and Deployment **National Fuel** ENERGY TECHNOLOGY & INNOVATION CANADA INTERMOUNTAIN VATION ET TECHNOLOGIE DE L'ÉNERGIE CANADA 4. Tech GAS COMPANY Development 5. Product Development Pacific Gas and Nicor Gas" OUESTAR NYSEG Electric Company® An AGL Resources Company Gas Energy Efficiency Program ETP activities are "beyond development" stage: Field Testing, Demonstration, Pilot Programs, and nkeeqas Deployment – a focused effort to ensure market miongas acceptance of next-generation emerging technologies A Northeast Utilities Company A Spectra Energy Company

22

A 💦 Sempra Energy utility*

2013 Members Listed Above

2013 ETP Technologies and Program Concepts

Residential

- 1. EcoFactor 🛑
- 2. Combined Space and Water
- 3. ASE Smart Energy RetroSave
- 4. ShowerStart[™] Roadrunner II 🥠
- 5. Opportunities for Residential Natural Gas Feedback
- 6. Micro-Combined Heat and Power
- 7. Integrated Design: DHW Systems
- 8. Radiant Heating and Cooling
- 9. Mantis Condensing Fireplace
- Hybrid Gas Solar Domestic Hot Water
- 11. Direct Vent Wall Furnace
- 12. Essess Thermal Imaging
- 13. Inspired Bid Management System
- 14. Combi Boiler Space and Water Heat Systems
- 15. Gas Water Heater Timer

Commercial

- 1. Condensing Heating Rooftop Units Demand Controls for Central Hot Water Systems
- 2. Ozone Laundry 🗸
- Greffen M2G Advanced Load Monitoring 4. Boiler Controller
- 4. IntelliChoice Energy NextAire Multi-Zone GHP
- 5. Commercial Food Service Technologies
- Rheem H₂AC[™] Integrated Air and Water 7. RTU
- 7. High Efficiency Condensing Unit Heater
- 8. Pulse Check by Pulse Energy
- 9. Wireless Pneumatic Thermostat
- 10. Modulating Dryer Retrofit 두
- 11. SentinelWorks Building Energy Management System
- 12. Ilios High Efficiency Water Heater

Industrial

- 1. Ultramizer Boiler Heat
 - Recovery
- 2. Air Curtains
- 3. SRU Flue Gas Condenser
 - Automated Steam Trap Monitoring
- 5. Destratification Fans
- 6. VOCGEN Combined Heat and Power
 - Boiler Heat Recovery
 Workshop
- 8. Advanced Grain Dryer

ETP National Pilot Residential HE Combo Systems

- 94 EF condensing tankless water heater + hydronic air handler (Rheem pictured)
 - Improves utility/customer value proposition for water heating by piggy-backing on larger space heating load
- Multi-unit demonstrations/pilots in IL, NY, and CA
 - > At least 25 residencies with full data acquisition systems
- Measured field performance, energy savings, cost analysis, and customer reaction
- Contractor technical/sales training, consumer messaging, and rebate program pilot
- GTI is investigating *combi* systems for oil or gas hydronic (e.g. radiator) replacements too

Field Assessments High Efficiency Gas PACs- RTUs

- Collaboration with NREL, DOE, manufacturers, national accounts, and utilities
- Large-scale monitoring shows diverse runtimes for RTUs and more therm use than energy models suggested
- Dedicated outside air systems (DOAS) provide high efficiency market entry point application
 - "big box" retail accounts with established DOAS vendors
 - high heating degree day (HDD)/heating load locations
 - 24/7 retail stores
- Retail partner projected \$4,400 premium, = 4.1 years ROI
 @ 90%TE without incentives
- Northern climates see more than 2,500 therm savings/year/unit!

Active Manufacturers

Manufacturer	Availability	Heating Module Specifications w/Hot Link (subject to change)
Engineered Air	now	90%TE, 100 – 1,400 MBH input, 15:1 turndown, 1,000 to 44,000 CFM www.engineeredair.com/pdf/DJX%20Brochure.pdf
Modine	now	90%TE, up to 500 MBH input, 7:1 turndown, up to 12,000 CFM <u>www.modine.com/download/1/MCP15-110.pdf</u>
Reznor	now	91%TE, up to 350 MBH input, 8:1 turndown, up to 6,000 CFM http://www.rezspec.com/en/products/product-air-handler-rhh
Munters	now	90%TE, up to 800 MBH input, 10:1 turndown, up to 16,000 CFM http://www.munters.us/en/us/ProductsServices/Dehumidification/Energy- Recovery/Packaged-Energy-Recovery1/?Product=87392AFD-C031-4BC7- AED9-65E508651504 (product literature does not currently show condensing option)

EcoFactor Home Energy Management

MARKET SITUATION

Baseline

- Conventional and programmable thermostat
- Related to other residential energy savings offerings in thermostat, Home Energy Management (HEM), behavior space

Opportunity

- Energy Efficiency: natural gas and electricity savings
- Market potential: retrofit existing systems and for new installations

Segment

- Residential (single and multifamily) and commercial
- New construction and retrofits

Status

 Technology is mature, and readily available through certain programs

Next Steps

- Program metrics needed
- Large-scale pilot activity underway to better understand delivery channel approach, energy savings, costs (first, ongoing)

ACTIVE ETP

PROJECT

Technology

 EcoFactor is based on proprietary software that analyzes and adjusts a home's thermostat to control the HVAC operation based on weather data and other information, including home occupancy status.

Savings Potential

- **36%** off the cost to heat and cool a home.
 - **10-20%** savings from automated energy efficiency
 - **16%** savings from personalized schedules

ETP Activity

- The Nicor Gas Emerging Technology Program is partnering with EcoFactor to install and monitor over 100 EcoFactor Home Energy Monitoring Systems.
- Systems installed, data collection and analysis ongoing

Modulating Gas Dryer Retrofit

MARKET SITUATION

Baseline

Commercial dryers

Opportunity

- Energy efficiency: natural gas savings
- Market potential: retrofit existing systems

Segment

Commercial on-premises
 laundry facility retrofits

Status

 Technology is mature and readily available off the shelf

Next Steps

 Third party verification of benefits and market analysis

Figure 1: Bio-Therm modulating controls, furnished by EZ Efficiency

Burner on Time	1 Hour	2 Hours	3 Hours	4 Hours	5 Hours	6 Hours
Dryer BTU						
70K	\$ 0.264	0.528	0.792	1.056	1.320	1.584
80K	\$ 0.300	0.600	0.900	1.200	1.500	1.800
90K	\$ 0.339	0.678	1.017	1.356	1.695	2.034
100K	\$ 0.375	0.750	1.125	1.500	1.875	2.250
125K	\$ 0.468	0.936	1.404	1.872	2.340	2.808
150K	\$ 0.567	1.134	1.701	2.268	2.835	3.402
175K	\$ 0.657	1.314	1.971	2.628	3.285	3.942
200K	\$ 0.750	1.500	2.250	3.000	3.750	4.500
215K	\$ 0.807	1.614	2.421	3.228	4.035	4.842
250K	\$ 0.939	1.878	2.817	3.756	4.695	5.634

Figure 2: Bio-Therm savings table by drying time and dryer size, furnished by EZ Efficiency

Technology

 Modulating gas dryer controls allows the firing rate of standard commercial gas-fired dryers to adjust for the changing demand in heat needed to drive off moisture thereby reducing heat generation and gas use.

Savings Potential

- 2 year payback period.
- Barriers
 - Making changes to a manufacturer's burner system raises safety and liability issues.
 - Burner systems are carefully designed for a specific firing rate and excess air ratio and tested to verify their performance under those conditions.
 - It would require the appliance to no longer be in its warranty coverage since this should void any manufacturer's warranty if installed.

ETP Opportunity

 Nicor Gas ETP is evaluating this technology in the field with 2 hotel sites, 1 laundromat, and 1 healthcare site. The identification of 1 laundry/linen service site is pending.

Automated Steam Trap Monitoring

MARKET SITUATION

Baseline

 Standard steam trap with no notification upon failure with or without manual steam trap auditing

Opportunity

- Energy efficiency: natural gas and electricity savings
- Water Savings
- Market potential: retrofit existing systems and for new installations

Segment

- Industrial steam traps
- New construction and retrofits

Status

 Technology has been installed at a number of facilities

Next Steps

 Third party verification of benefits and market analysis

Six Month Delay with Annual Inspection

After installation of automated steam trap monitoring

Technology

 Automatic steam trap monitoring is an automated system that can identify a failing steam trap as it is becomes ineffective and notifies a web-based system instantly.

Savings Potential

- 1 year payback period
- ETP Activities
 - Nicor Gas looking for single high pressure steam system site
 - Targeting branch with 200 traps
 - Coordinating with active SoCal Gas project

Gas Water Heater Timer

MARKET SITUATION

Baseline

 Residential domestic hot water storage water heaters

Opportunity

- Energy efficiency: natural gas savings
- Market potential: retrofit existing systems and for new installations

Segment

- Residential retrofit
- Limited new construction

Status

 Technology is readily available

Next Steps

 Third party validation and evaluation of benefits

Figure 1: Gas water heater timer connected to gas valve, furnished by American Pacific

Average Ta	ank Temperature (*F)	Water Flow Rate	(GPM)	Gas Flow Rate (SCF	₩)
					1
\backslash					
	Γ	Gas Consumption: 102.2 Energy Input: 104.276	SCF		
		Standby BFR: 445	Btu/Day Btu/hr		

Figure 2: Gas tank temperature over 9 day period

Technology

 A gas water heater timer is a controller that can automatically "set back" or lower stored temperature within the tank of a water heater for periods of time when hot water demand is low, and raise the temperature for periods of time when hot water demand is high.

• Savings Potential

- 2.5 year payback period

• ETP Review

- GTI and PG&E tested water heaters in both laboratory and field conditions as part of a California Energy Commission Water Heating Program.
- The graph shows the average tank temperature and gas flow of an atmospherically vented, residential gas storage water heater, .59 EF, left to idle over a 9-day period--pilot light maintained tank temperature at 110°F and the burner performed a single reheat cycle on the 9th day.
- Question of whether or not there are enough avoided reheat cycles in setback period to provide cost-effective therm savings.

Rheem H₂AC[™] Integrated Air and Water RTU

MARKET SITUATION

Baseline

Traditional HVAC equipment

Opportunity

- Energy efficiency: natural gas and electricity savings
- Water savings
- Market potential: retrofit existing systems and for new installations

Segment

- Commercial
- 1500 gallons of hot water loads or more per day
- 1800 cooling degree days or more per year
- New construction and retrofits

Status

- Technology has been tested at a number of facilities
- Available for installation

Next Steps

 Third party verification of benefits and market analysis.

Technology

Designed for full-service restaurants, the first-of-its kind Rheem H₂ACTM Packaged Rooftop Unit[™] with eSync Integration Technology[™] delivers air conditioning and water heating from a single source. The system works by taking the heat removed from the HVAC system — which would normally be rejected into the atmosphere — and uses it to heat water.

Cost/Benefits

 1.3 to 2 year payback period on tested systems

Market Barriers

- High upfront costs and
- Lack of consumer familiarity

Summary

- > U.S. natural gas industry in special period due to confluence of E&P innovations & supply endowment
- > Poised for growth: power gen, industrial, transportation
- Integrated solutions needed to grow CHP use coupled with policy efforts to overcome market barriers
- > Efficient, smart uses in residential/commercial sectors
- > Energy efficiency programs challenged by low gas prices
 - Focused RD&D efforts necessary to develop next generation gas utilization equipment and validate technologies and savings potential

GTI is a company that solves important energy challenges, a company that truly has...

... "the Energy to Lead"

Contact information

Paul Armstrong Director of Business Development 781-449-1141 Paul.Armstrong@gastechnology.org

