Deployment of New Technologies for Leak Detection and Quantification at PG&E

François Rongere
CH₄ Connections
Fort Collins, September 26th, 2018
Pacific Gas and Electric Company, incorporated in 1905, is one of the largest combination natural gas and electric utilities in the United States.

- The company provides natural gas and electric to approximately 15 million people throughout a 70,000-square-mile service area in northern and central California.
- Service area stretches from Eureka in the north to Bakersfield in the south, and from the Pacific Ocean in the west to the Sierra Nevada in the east.

Gas Operation Key Statistics

- **5,800 miles** of gas transmission pipeline
- Approx. **42,000 miles** of gas distribution main
- 4.3 million natural gas customer accounts.
- Deliver 820 BCF/year (2.62 CF/daily average)
Mobile Leak Detection

- PG&E was the first gas utility in the USA to use high-sensitivity mobile leak detection system
- It is today deployed as part of PG&E’s safety leak survey process
Re-inventing the process

• Compliance survey:
 – Redefined the leak survey process around mobile technology
 • Driving protocol
 • Investigation around methane indications
 • Coverage and gap investigations
 • The “5 foot rule”
 – Adapted resources to leak found rate
 • Leak investigation
 • Leak repair

Asset coverage with mobile leak detection, indication of higher methane concentration, coverage gaps
Continuous Improvement

• Data collected through mobile survey and leak repair are systematically analyzed to optimize:
 – Leak indication filtering
 – Coverage modeling
 – Investigation areas

Coverage gaps are surveyed by foot using traditional technologies

Percent Leaks Found

Percent Services Searched
New Applications

- Methane abatement:
 - Accelerated detection and repair of large leaks of the distribution system
- Risk based leak survey:

WSU study: Only 2% of leaks were > 10 scfh but accounted for 56% of total emissions
Stationary Systems to address variable Sources

- In facilities, methane emissions are a function of operations
- Stationary detectors help to correlate emissions and operations
- We are also exploring quantification possibilities

Heath (right) and Sensit/Acutect (left) detectors installed at PG&E storage and regulation facilities
Towards light and versatile systems

- Based on NASA’s device used to detect methane on Mars.
- The detector has **superior sensitivity (parts per billion)** and is lightweight (150g) compared to existing technologies.

![Prototype of the handheld methane-ethane detector.](image1)

![UAV mounted detector being tested at UC Merced.](image2)
New aerial survey system

- Quick detection of sizeable leaks on the transmission system
- Differential Absorption LiDAR DIAL system on a fix wing single engine aircraft
 - 150 - 900 ft. swath
 - Altitude: 3,000 ft.
 - Speed: 125 m/h
- Field tests in 2017
- Pre-deployment pilot in 2018

Controlled release of ~133 SCFH methane on October 3rd 2017
Exploring new technologies

• Inexpensive distributed leak detectors
 - Bioinspira
 - Reactive protein
 - Stanford
 - Electrochemical potential

• Optical Gas Imaging
 - Control and field testing

• Open-path Laser Comb technology
 - Demonstration at our storage facility

University of Colorado’s methane sensor trailer at McDonald Island and a map of their plan
Take away

• Advanced Technology is a key part of PG&E’s leak management strategy

• Mobile leak detection deployment has been a several year process that led successively to:
 - Vetting through controlled and field testing
 - Design and optimization of a new leak management process
 - Continuous improvement using data collection capabilities
 - Additional applications

• Beyond mobile leak detection a broad range of technologies are being explored and developed in collaboration with many organizations
Thank you

François Rongere
fxrg@pge.com