

Testing Next Generation LDAQ Technologies *Protocols And First Results*

Daniel Zimmerle

Methane Emissions Technology Evaluation Center

METEC Goals

Goal #1: Gauge technical performance

- Independent testing and validation at a neutral venue to demonstrate technology and system performance
 - Two official rounds of testing (R1 and R2)
 - Opportunities for *ad hoc* testing

Goal #2: Engage stakeholder community

- Facilitate more effective hand-off and post-MONITOR field testing by developers and operators
 - Representative test site to engage stakeholders
 - Engage operators in design & construction of test site

CSU's Background in Methane Measurement

Papers: CSU & Partners

1. Subramanian, R. *et al.* Methane Emissions from Natural Gas Compressor Stations in the Transmission and Storage Sector: Measurements and Comparisons with the EPA Greenhouse Gas Reporting Program Protocol. *Environ. Sci. Technol.* **49**, 3252–3261 (2015).

2. Zimmerle, D. J. *et al.* Methane Emissions from the Natural Gas Transmission and Storage System in the United States. *Environ. Sci. Technol.* **49**, 9374–9383 (2015).

3. Mitchell, A. L. *et al.* Measurements of Methane Emissions from Natural Gas Gathering Facilities and Processing Plants: Measurement Results. *Environ. Sci. Technol.* **49**, 3219–3227 (2015).

 Marchese, A. J. *et al.* Methane Emissions from United States Natural Gas Gathering and Processing. *Environ. Sci. Technol.* 49, 10718–10727 (2015).
Bell, C. *et al.* Reconciliation of methane emission estimates from multiple measurement techniques at natural gas production pads. *Elem Sci Anth* (2017).

6. Vaughn, T. L. *et al.* Comparing facility-level methane emission rate estimates at natural gas gathering and boosting stations. *Elem Sci Anth* **5**, (2017).

7. Zimmerle, D. J. *et al.* Gathering pipeline methane emissions in Fayetteville shale pipelines and scoping guidelines for future pipeline measurement campaigns. *Elem Sci Anth* **5**, (2017).

8. Schwietzke, S. *et al.* Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements. *Environ. Sci. Technol.* (2017). doi:10.1021/acs.est.7b01810

9. Roscioli, J. R. *et al.* Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods. *Atmos Meas Tech* **8**, 2017–2035 (2015).

 Robertson, A. M. *et al.* Variation in Methane Emission Rates from Well Pads in Four Oil and Gas Basins with Contrasting Production Volumes and Compositions. *Environ. Sci. Technol.* (2017). doi:10.1021/acs.est.7b00571
Yacovitch, T. I. *et al.* Natural gas facility methane emissions: measurements by tracer flux ratio in two US natural gas producing basins. *Elem Sci Anth* 5, (2017).

4

Pad 5

5

Outlining a Potential Path To Equivalence

- 1. Establish a quantitative efficacy baseline for currently approved methods
- 2. Develop a technology-independent method to quantify equivalent emissions control and reduction
- 3. Develop a test & acceptance protocol for technology/method combinations.
- 4. Stakeholder preparation for the regulatory and policy adoption cycle

^oossible to work in parallel on multiple steps

Outlining a Potential Path To Equivalence

- 1. Establish a quantitative efficacy baseline for currently approved methods
- 2. Develop a technology-independent method to quantify equivalent emissions control and reduction
- 3. Develop a test & acceptance protocol for technology/method combinations.
- 4. Stakeholder preparation for the regulatory and policy adoption cycle

2) Define Equivalency: Assess Results in a Tech-independent Way

- Objective:
 - Develop method to understand performance of dramatically different methods
 - Build buy-in from stakeholders
- Concept:
 - Define deployment methods
 - Effectiveness testing aligned methods
 - Feed effectiveness metrics into software model
 - Merge with company/industry processes
 - e.g. response process after detections

Comparing Emissions Reduction Requires a Model

Shameless Advertising Alert: OGI Baseline Study – Volunteer Your Teams!

Slots open on next test week:

- October 8 1 team
- October 9 3 teams
- October 10 3 teams
- October 12 2 teams

Additional testing:

- October 23-25
- One week Tues-Thurs in early November

Invitation

- Team: Experienced camera operator with own camera and protocol
- Operator LDAR teams
- Contractor teams
- Regulators
- Recommend 2 days on site
 - 5-7 surveys over 2 days
- Sponsorship from
 - EPA
 - Environmental Partnership

What's New in the Solution Approaches

Deployment Protocol

- Staff training
- Usage frequency
- Data integration
- Response thresholds

...

Existing types ... new combinations

Other Testing Complexities

Technology readiness level

• Detection & quantification versus detection only

• Probabilistic outputs

... there is a >70% probability of an emissions > 10 scfh in this volume

• Usable reporting

Current Protocols ... Future Direction

Focus of R2 Test Protocols

Deployment

- Basin Survey
- Continuous Monitoring

Repeatability

Technology Readiness

• Graded complexity: A / B / C

ENERGY INSTITUTE

Deployment Types

• **Basin Survey** \rightarrow Solutions meant for assessing multiple sites

- Solution: Rapidly screen sites with mobile unit. Typically a more expensive & sensitive system than permanent installs
- Test Design
 - 1 week / multiple teams
 - Move between pads with different emissions scenarios "as fast as possible"
- Deployment: Mobile to site / Mobile or stationary around the site

• Continuous Monitoring – Stationary Sensors

- Solution: Permanently install inexpensive sensors that operate ≈24/7
- Test Design
 - 2 weeks / multiple teams / larger METEC pads
 - Multiple hours per emission scenario
- Deployment: Sensors at site / Sensor at a distance covering many sites

Technology Readiness

3-Level Test Complexity

A

- Single emission point per pad
- Steady emission rate

В

С

- Multiple emission points per pad
- Steady emission rate

• Multiple emission points per pad

• Steady, unsteady & intermittent rates

Site Complexity

Small

Medium

Large

ENERGY INSTITUTE COLORADO STATE UNIVERSITY

Reporting

- Performers reported leaks on xyz grid
 - GPS coordinates for automated solutions
 - Human "lookup" for solutions without local GPS
- Performers varied on reporting speed
 - 7 MONITOR "full solutions"
 - 5 Tested and returned results: Bridger, CU, PSI, IBM, Rebellion
 - 1 Tested, report too late for presentation: Aeris
 - 1 Hasn't tested: PARC
 - 4 non-monitor did "formal single-blind R2 tests"
 - Reported results: Fluke, Gas Detection, Heath/REM
 - Tested, report to late for presentation: AlertPlus, Heath/REM
- @ METEC: Many additional tests that were not formal single-blind R2 tests

Recommend local-base GPS systems for future testing & SCADA integration

- Reporting time varied from 1 week to >3 months
- Typical time several weeks

Detection "Grades"

- <u>Detected</u>
 - Emission point reported on same equipment *unit* as an emission point: "Pad 4 / Wellhead 2"
 - 15% of difficulty "C" test points had two emitters close together: Detected if one reported.
- <u>Same Group</u> (Important for some stationary solutions)
 - Emission point reported on same *equipment group* as an emission point: "Pad 4 / Wellhead 2" but emission was on "Pad 4 / Wellhead 1"
- <u>Not Detected</u>
 - No reported point on same equipment or same group
- False Positive
 - Reported emission on equipment group with no emission point

Not Covered in R2 Protocols

- Full complexity of emissions on real sites
 - Stochastic emission amounts, timing
 - Long-gaps between emission events
 - Operator interventions
- Weather \rightarrow All tests are short (max 2 weeks), all in Colorado
- Site complexity \rightarrow Well pads of low-to-moderate complexity
- Limited gas composition range may impact gas detection sensitivity
 - 86-88% methane / 10-12% ethane / market gas ightarrow used for automated tests
 - Methane only / unscented \rightarrow used for handheld tests
- No hot backgrounds
- No exhaust plumes

Results

Who & How Many ...

- Categories are "hazy"
 - Several levels of "mobility" / several degrees of "stationary"

Complex Scenarios Are Harder ...

- Detection rates drop when multiple emission points are present
- Type of multi-point emissions has less impact than "if there are multiple points"

All Solutions

□ Detected □ Same Group □ Not Detected

3-Level Test Complexity

- A Single emission point per pad, Steady emission rate
- B Multiple emission points per pad, Steady emission rate
- C Multiple emission points per pad, Steady & intermittent rates

Large, closely spaced, equipment is harder ...

ENERGY INSTITUTE

Smaller Leaks are Harder ...

- Handheld solutions do better but (in theory) require more labor
- Direct confirmation of results

Detection Rate for Mobile Sensor Systems Drones & Vehicle-Based

Detected Not Detected

Stationary Solutions – Identification Level

- Operate 24/7
- Detection is comparable to other solutions
- Localization is less precise

Detection Rate for Stationary Solutions Localization to Equipment Unit

Detected Not Detected

Detection Rate for Stationary Solutions Localization to Equipment Group

Detected Not Detected

Quantification remains problematic

Localization ... looks promising ...

- 2D 70% within 1 meter
- 3D 54% within 1 meter

- Recommend automated capture of leak locations
 - In solution design
 - In SCADA tracking systems

Reported Location Only Detections - Reported on Same Unit as Emitter

Solution performance varies ...

- R2 protocol is a repeatable test
 - Varying weather conditions ... retests for weather allowed
 - No limit on time to turn in results
 - Sites / hour varies substantially
- Cost of solution must also be considered
 - Fully automated versus "operator plus tool"
- Most drone-based require pilot now, but moving toward automated flight paths

All Basin Survey Solutions R2 Single-Blind

Detected Same Group Not Detected

- Mobile vehicles, drones, and handheld
- Varying degrees of automation & human intervention

What Have We Learned?

- Testing even in simplified METEC environment distinguishes differences in performance
- Nuances challenge comparisons
 - Variation in deployment methods
 - Amount of human interaction with automated solutions \rightarrow translates to cost
 - Amount of labor in post-measurement analysis \rightarrow translates to cost
- Protocols are informative, but need more development
 - More repeat testing
 - Standardized reporting with time limits
 - Tracking practical performance metrics: time/site, up-time, etc.

Future of Testing Protocols

Proposed "Testing Products"

1. Basin survey

Revisions & refinements of R2 protocols (with advisory input)

- 2. Continuous monitoring *Time to detection* must be measured
- 3. Detection only variants Basin & continuous monitoring modes for *detection only* solutions
- 4. Duration data product

Cost-reduced method to support long-term installs @ test site

Roundup Logisitcs

Remember to fill out a feedback form!

Thank You

Contact

Daniel Zimmerle, Sr. Research Associate, Energy Institute Dan.Zimmerle@colostate.edu | 970 581 9945

Energy.ColoState.edu

